25,156 results match your criteria: "Nankai University.[Affiliation]"

Development of a prediction nomogram for IgG levels among asymptomatic or mild patients with COVID-19.

Front Cell Infect Microbiol

December 2024

Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.

Objective: COVID-19 has evolved into a seasonal coronavirus disease, characterized by prolonged infection duration and repeated infections, significantly increasing the risk of patients developing long COVID. Our research focused on the immune responses in asymptomatic and mild cases, particularly the critical factors influencing serum immunoglobulin G (IgG) levels and their predictive value.

Methods: We conducted a retrospective analysis on data from 1939 asymptomatic or mildly symptomatic COVID-19 patients hospitalized between September 2022 and June 2023.

View Article and Find Full Text PDF

Background: Postmenopausal women represent the demographic increasingly susceptible to cardiovascular and metabolic diseases. Elevated levels of remnant cholesterol (RC) have been implicated in atherosclerosis and insulin resistance.

Methods: This study aimed to investigate the relationship between RC and the prevalence of coronary heart disease (CHD), diabetes, and CHD combined with diabetes in a nationally representative sample of US postmenopausal women using data from the National Health and Nutrition Examination Survey (NHANES) 2007-2018.

View Article and Find Full Text PDF

Therapeutic potential of CD73 mesenchymal stem cells for myocardial infarction and beyond.

Histol Histopathol

December 2024

Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, PR China.

Extracellular adenine nucleotides serve as crucial signaling molecules and influence a broad spectrum of physiological and pathological processes. CD73, the rate-limiting enzyme in the metabolism of extracellular adenine nucleotides, is ubiquitously expressed on various cell types, particularly stem cells. CD73 mesenchymal stem cells (MSCs) have emerged as promising candidates for therapeutic applications due to their immunomodulatory and pro-regenerative properties.

View Article and Find Full Text PDF

A novel self-assembling peptide nanofiber hydrogel with glucagon-like peptide-1 functionality enhances islet survival to improve islet transplantation outcome in diabetes treatment.

J Nanobiotechnology

December 2024

NHC Key Laboratory for Critical Care Medicine, School of Medicine, Tianjin First Central Hospital, Research Institute of Transplant Medicine, Organ Transplant Center, Nankai University, Tianjin, 300071, China.

Islet transplantation is a promising therapy for diabetes, yet the limited survival and functionality of transplanted islet grafts hinder optimal outcomes. Glucagon-like peptide-1 (GLP-1), an endogenous hormone, has shown potential to enhance islet survival and function; however, its systemic administration can result in poor localization and undesirable side effects. To address these challenges, we developed a novel peptide-based nanofiber hydrogel incorporating GLP-1 functionality for localized delivery.

View Article and Find Full Text PDF

Manipulating π-π Interactions between Single Molecules by Using Antenna Electrodes as Optical Tweezers.

Phys Rev Lett

December 2024

Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China.

Via conductance measurements of thousands of single-molecule junctions, we report that the π-π coupling between neighboring aromatic molecules can be manipulated by laser illumination. We reveal that this optical manipulation originates from the optical plasmonic gradient force generated inside the nanogaps, in which the gapped antenna electrodes act as optical tweezers pushing the neighboring molecules closer together. These findings offer a nondestructive approach to regulate the interaction of the molecules, deepening the understanding of the mechanism of π-π interaction, and open an avenue to manipulate the relative position of extremely small objects down to the scale of single molecules.

View Article and Find Full Text PDF

Supramolecular Assembly Enhanced Linear and Nonlinear Chiroptical Properties of Chiral Manganese Halides.

Angew Chem Int Ed Engl

December 2024

School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China.

Chiral hybrid organic-inorganic metal halides (HOMHs) hold great promise in broad applications ranging from ferroelectrics, spintronics to nonlinear optics, owing to their broken inversion symmetry and tunable chiroptoelectronic properties. Typically, chiral HOMHs are constructed by chiral organic cations and metal anion polyhedra, with the latter regarded as optoelectronic active units. However, the primary design approaches are largely constrained to regulation of general components within structural formula.

View Article and Find Full Text PDF

Although great advancement has been made in synthesis of 3D bridged bicyclic[n.1.1]-bioisosteres, facile construction of 2D/3D merged molecules incorporating bridged rings, as novel chemical space in drug discovery, remains a significant challenge.

View Article and Find Full Text PDF

Oligoadenine Strand Functionalized Polyacrylamide Hydrogel Film Exhibiting pH-Triggered High-Degree Inverse Shape Deformations.

Chembiochem

December 2024

Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.

Smart shape-memory DNA hydrogels, which can respond to various types of external stimuli and undergo macroscopic shape deformations, have shown great potential in various applications. By constructing free-standing films, the deformation and response properties of these hydrogels can be further enhanced, and visualized deformation can be achieved. However, DNA hydrogels that can exhibit rapid and high-degree shape deformations, such as the inverse shape deformations, are still lacking.

View Article and Find Full Text PDF

Chlorine Axial Coordination Activated Lanthanum Single Atoms for Efficient Oxygen Electroreduction with Maximum Utilization.

Adv Mater

December 2024

Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.

Currently, there are still obstacles to rationally designing the ligand fields to activate rare-earth (RE) elements with satisfactory intrinsic electrocatalytic reactivity. Herein, axial coordination strategies and nanostructure design are applied for the construction of La single atoms (La-Cl SAs/NHPC) with satisfactory oxygen reduction reaction (ORR) activity. The nontrivial LaNCl motifs configuration and the hierarchical porous carbon substrate that facilitates maximized metal atom utilization ensure high half-wave potential (0.

View Article and Find Full Text PDF

Solar-Driven Sulfide Oxidation Paired With CO Reduction Based on Vacancies Engineering of Copper Selenide.

Small

December 2024

Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin, 300350, P. R. China.

Photovoltaic-driven electrochemical (PV-EC) carbon dioxide reduction (COR) coupled with sulfide oxidation (SOR) can efficiently convert the solar energy into chemical energy, expanding its applications. However, developing low-cost electrocatalysts that exhibit high selectivity and efficiency for both COR and SOR remains a challenge. Herein, a bifunctional copper selenide catalyst is developed with copper vacancies (v-CuSe) for the COR-SOR.

View Article and Find Full Text PDF

Silicon heterojunction (SHJ) solar cells, as one of the most promising passivated contact solar cell technologies of the next generation, have the advantages of high conversion efficiency, high open-circuit voltage, low-temperature coefficient, and no potential-induced degradation. For the single-side rear-emitter SHJ solar cells, the n-type carrier selective layer, which serves as the light-incident side, plays a pivotal role in determining the performance of heterojunction devices. Consequently, a superior n-doped layer should exhibit high optical transmittance and minimal optical absorption, along with a substantial effective doping level to guarantee the formation of dark conductivity (σ) and electron-transport capacity.

View Article and Find Full Text PDF

Respiratory diseases pose a major public health challenge globally, necessitating collaborative efforts between basic researchers and clinicians for effective solutions. China, which is heavily impacted by a broad spectrum of respiratory disorders, has made notable strides in both research and clinical management of these diseases. The International Respiratory Medicine (IRM) meeting was organized with the primary goal of facilitating the exchange of recent research developments and promoting collaboration between Chinese and American scientists in both basic and clinical research fields.

View Article and Find Full Text PDF

A bacteria-responsive nanoplatform with biofilm dispersion and ROS scavenging for the healing of infected diabetic wounds.

Acta Biomater

December 2024

Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China. Electronic address:

Delayed wound healing in patients with diabetes remains a major health challenge worldwide. Uncontrolled bacterial infection leads to excessive production of reactive oxygen species (ROS) and persistent inflammatory responses, which seriously hinder conventional physiological healing processes after injury. Biofilms, as protective barriers for bacteria, pose a critical obstacle to effective bacterial eradication.

View Article and Find Full Text PDF

The characteristics of phthalate acid esters and bisphenol A in PM of a petrochemical city: Concentrations, compositions, and health risk assessment in Dongying.

Environ Pollut

December 2024

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China.

Phthalate acid esters (PAEs) and bisphenol A (BPA) are recognized as common endocrine disruptors associated with various adverse effects on human health. However, limitations in existing systematic studies, particularly in air detection, have raised concerns about potential health risks from inhalation exposure. In this study, PM samples were collected in Dongying, a petrochemical city, from October 27 to December 6, 2021.

View Article and Find Full Text PDF

Effects of compound immobilized bacteria on remediation and bacterial community of PAHs-contaminated soil.

J Hazard Mater

December 2024

MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.

Immobilized microorganism technology is expected to enhance microbial activity and stability and is considered an effective technique for removing soil polycyclic aromatic hydrocarbons (PAHs). However, there are limited high-efficiency and stable bacterial preparations available. In this study, alkali-modified biochar (Na@CBC700) was used as the adsorption carrier, sodium alginate (SA) and polyvinyl alcohol (PVA) as embedding agents, and CaCl as the cross-linking agent to prepare immobilized Acinetobacter (CoIMB) through a composite immobilization method.

View Article and Find Full Text PDF

Revealing the key role of interfacial oxygen activation over CoMnO@MnO in the catalytic oxidation of acetone.

J Hazard Mater

December 2024

Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China. Electronic address:

The accumulation of intermediate products on the catalyst surface caused by insufficient oxygen activity is an important reason for the poor activity of catalysts towards oxygenated volatile organic compounds (OVOCs). CoMnO@MnO heterogeneous catalysts were fabricated to decipher the interfacial oxygen activation mechanism for efficient acetone oxidation. Experimental and theoretical explorations revealed that oxygen vacancies were easily formed at the interface.

View Article and Find Full Text PDF

Background: The best open side for unilateral open-door laminoplasty (UODL) to treat inconsistent cervical ossification of the posterior longitudinal ligament (OPLL) needs to be identified.

Methods: Thirty-one individuals with inconsistent OPLL who underwent UODL between January 2016 and December 2018 were retrospectively divided into two groups: when the side of the open door was consistent with the side of the larger ossification occupancy area, patients were placed in the Consistent group; when the side of the open door was contralateral to the side of the larger ossification occupancy area, patients were placed in the Contralateral group. The following parameters were evaluated: neck disability index (NDI) score, Japanese Orthopaedic Association (JOA) score, visual analog scale (VAS) score, postoperative laminoplasty opening width and angle, and spinal cord diameter ratio.

View Article and Find Full Text PDF

TIGIT CD4 regulatory T cells enhance PD-1 expression on CD8 T cells and promote tumor growth in a murine ovarian cancer model.

J Ovarian Res

December 2024

Department of Gynecology and Obstetrics, The Affiliated Hospital of Nankai University, Tianjin No. 4 Hospital, Tianjin, 300222, China.

Immune checkpoint-based immunotherapy has shown limited efficacy in the treatment of ovarian cancer. In recent years, the emergence of immune checkpoint co-targeting therapies, led by the combination targeting of TIGIT and FAK, has shown promise in ovarian cancer treatment. Our preliminary research indicates that TIGIT is predominantly expressed in regulatory T cells during ovarian cancer.

View Article and Find Full Text PDF

Understanding the protein conformation transition within polymer hydrogels using a near-infrared water spectroscopy probe.

Int J Biol Macromol

December 2024

Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China. Electronic address:

For understanding the behavior of the active substance in vivo, the near-infrared (NIR) spectral variations of ovalbumin (OVA) loaded in poly(N, N-dimethyl acrylamide) (PDMAA) hydrogel with temperature were investigated. Analyzing the spectra with improved resolution by continuous wavelet transform (CWT), the absorption variation of the peak at 4851 cm arising from the α-helix of OVA with temperature was studied. The results show that a sharp decrease occurs at a lower temperature in PDMAA hydrogel, indicating that the unfolding of OVA in PDMAA hydrogel is facilitated.

View Article and Find Full Text PDF

Protective effects and bioinformatic analysis of narciclasine on vascular aging via cross-talk between inflammation and metabolism through inhibiting skeletal muscle-specific ceramide synthase 1.

Mech Ageing Dev

December 2024

School of Medicine, Nankai University, 94 Weijin Road, Tianjin 30071, China; Institude of Chinese PLA Geriatric Medicine, The Second Medical Centre, Chinese PLA General Hospital & National Clinical Research Center for Geriatric Diseases, Beijing 100853, China. Electronic address:

Objective: The senescence of smooth muscle is one of the independent risk factors in atherosclerosis progression in which the vascular inflammation plays an important role on vascular dysfunction. This study is designed to explore the novel vascular aging biomarkers and screen the potential molecular interventional targets through bioinformatic analysis.

Results: Transcriptional analysis was conducted based on the GSE16487 open access database, which included 15 human vascular tissue samples from two groups: young group (≤ 60 years old, n = 8) and aged group (≥ 75 years old, n = 7).

View Article and Find Full Text PDF

Intrinsic structure-function connections of carbon-encapsulated nanoscale zero-valent-iron using various pyrolysis atmospheres.

J Environ Manage

January 2025

Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China. Electronic address:

Carbon-encapsulated nanoscale zero-valent-iron (C@Fe) derived from plant-based extracts has been the subject of growing interest due to its environmental friendliness. However, the effects of various pyrolysis atmospheres on the structure-function connections of C@Fe are still unclear. In this study, three pyrolytic atmospheres, namely Air, N, and 5% H/Ar were selected to fabricate X-C@Fe (X represented as A, N, H) for removing 2,4,6-Trichlorophenol (TCP), and the relationships between their structures and functions were demonstrated.

View Article and Find Full Text PDF

Dental hygienists in China face unique occupational challenges, with their job satisfaction being pivotal to performance. This study investigates the interplay between job satisfaction and occupational stress, burnout, and musculoskeletal disorders (MSDs) among this group. A cross-sectional survey was conducted involving 21 female dental hygienists from Sir Run Run Shaw Hospital.

View Article and Find Full Text PDF

Dynamic phase transitions dictate the size effect and activity of supported gold catalysts.

Sci Adv

December 2024

Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.

The landmark discovery of gold catalysts has aroused substantial interest in heterogeneous catalysis, yet the catalytic mechanism remains elusive. For carbon monoxide oxidation on gold nanoparticles (NPs) supported on ceria surfaces, it is widely believed that carbon monoxide adsorbs on the gold particles, while the reaction occurs at the gold/ceria interface. Here, we have investigated the dynamic changes of supported gold NPs with various sizes in a carbon monoxide oxidation atmosphere using deep potential molecular dynamics simulations.

View Article and Find Full Text PDF

Zygotic genome activation occurs in two-cell (2C) embryos, and a 2C-like state is also activated in sporadic (~1%) naïve embryonic stem cells in mice. Elevated chromatin accessibility is critical for the 2C-like state to occur, yet the underlying molecular mechanisms remain elusive. Zscan4 exhibits burst expression in 2C embryos and 2C-like cells.

View Article and Find Full Text PDF