73 results match your criteria: "Nanjing Forestry University Nanjing 210037 China.[Affiliation]"

Partially deacetylated chitin nanofibers (ChNF) were isolated from shell residues derived from crab biomass and used to prepare hydrogels, which were easily transformed into continuous microfibers by wet-spinning. We investigated the effect of ChNF solid content, extrusion rate and coagulant type, which included organic (acetone) and alkaline (NaOH and ammonia) solutions, on wet spinning. The properties of the microfibers and associated phenomena were assessed by tensile strength, quartz crystal microgravimetry, dynamic vapor sorption (DVS), thermogravimetric analysis and wide-angle X-ray scattering (WAXS).

View Article and Find Full Text PDF

A novel method to produce sustainable biocomposites based on thermoplastic corn-starch reinforced by polyvinyl alcohol fibers.

RSC Adv

June 2020

Agricultural and Forest Products Processing Academician Workstation of Henan Province Luohe 462600 China.

Adding reinforced fiber or cross-linking agent into thermoplastic starch (TPS) is an effective method to improve its performance. Herein, biodegradable polyvinyl alcohol fiber (PVAF) and sodium hexametaphosphate (SHMP) were not added into TPS directly; the PVAFs were preliminary treated (pre-soaking) by an SHMP solution, and then mixed with starch and glycerol to prepare 2 wt% PVAF/TPS composites through extrusion and injection molding. This process promoted crosslinking action between PVAFs and starch, and as a consequence enhanced the mechanic and dynamic mechanic behavior.

View Article and Find Full Text PDF

In this study, dendritic polyamine chitosan beads with and without 2-aminomethyl pyridine were facilely prepared and characterized. Compared to CN (without the pyridine function), more adsorption active sites, larger pores, higher nitrogen content, higher specific surface area, and higher strength could be obtained for CNP (with the pyridine function). CNP microspheres afforded a larger adsorption capacity than those obtained by CN for different pH values; further, the uptake amounts of Cu(ii) were 0.

View Article and Find Full Text PDF

Li-S batteries have been attracting increasing interest owing to their remarkable advantages of low cost, high theoretical capacity and high theoretical energy density. Nevertheless, the severe "shuttle effects" of lithium polysulfides have markedly limited the performance of the cells and further hindered their commercial applications. Herein, a novel scheme combining a transformation strategy with ammonia treatment was developed to fabricate ZIF-8-derived nitrogen-doped hierarchically porous carbon (NHPC/NH).

View Article and Find Full Text PDF

Based on our previous studies on the modification of in-chain styrene butadiene rubber (SBR) using 3-mercaptopropionic acid as well as its composites filled with silica, we further constructed two types of models (amorphous and layered) to investigate the temperature dependence of the interfacial bonding characteristics of silica/SBR composites molecular dynamics (MD) simulation. The competing effects of rubber-rubber interactions and filler-rubber interactions were identified, and the relationship between the competing effects and the temperature was determined. Besides this, the effect of temperature on the mobility and distribution of SBR chains on the surface of silica was investigated.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries offer a low-cost and high-safety alternative for next-generation electrochemical energy storage, whereas suitable cathode materials remain to be explored. Herein, rod-like anhydrous VO derived from a vanadium-based metal-organic framework is investigated. Interestingly, this material is assembled by tiny nanosheets with a large surface area of 218 m g and high pore volume of 0.

View Article and Find Full Text PDF

The synthesis process of the phenolic resin adhesive was developed in the 19th century, and its excellent environmental resistance and high bonding strength make it one of the main wood adhesives. With the development of industry, phenolic resin adhesive is not only used in plywood, wood processing and laminate, but also in automobile, aerospace, composite materials and other fields. Herein we review the main synthetic processes and latest research progress for phenolic resin adhesives, the capacity distribution of major domestic phenolic resin enterprises, analysis of domestic phenolic resin consumption, import and export volume and price, Chinese plywood production, and the main production and export markets.

View Article and Find Full Text PDF

Here we report the first large-scale synthesis of Fmoc-()-2-amino-6,6,6-trifluorohexanoic acid via asymmetric alkylation of chiral Ni(II)-complex of glycine Schiff base with CF(CH)I. The synthesis was performed on over 100 g scale and can be recommended as the most advanced procedure for reliable preparation of large amounts of enantiomerically pure Fmoc-()-2-amino-6,6,6-trifluorohexanoic acid for protein engineering and drug design. Chiral auxiliary used in this protocol can be >90 % recovered and reused.

View Article and Find Full Text PDF

Noble metal-based catalysts have been proven to be active for catalytic organic reactions. The selectivity and conversion can be improved by integration with proper carrier materials, and further modulated by tuning the composition as well as the electronic structure of the active noble metals. Compared with unsupported monometallic catalysts, the synergistic interactions between neighboring metals and the combined effects between the carrier materials and the active components often give rise to positive influences on the enhancement of the catalytic efficiency and selectivity.

View Article and Find Full Text PDF

TiPTe monolayer: a promising two-dimensional anode material for sodium-ion batteries.

RSC Adv

May 2019

Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China

Developing efficient anode materials with a good electrochemical performance has been a key scientific issue in the development of sodium ion batteries (SIBs). In this work, by means of density functional theory (DFT) computations, we demonstrate that two-dimensional (2D) TiPTe monolayer is a promising candidate for this application. The exfoliation of TiPTe monolayer from its experimentally known layered bulk phase is feasible due to the moderate cohesive energy.

View Article and Find Full Text PDF

The investigation of the draw ratio and velocity of an electrospinning polymer solution jet is of great interest for understanding the formation of nanofibers. During the electrospinning process, the charged polymer solution jets were stretched by electric force, resulting in the formation of ultrathin fibers. In this study, theoretical deduction and experimental calculation were applied to evaluate the velocities and draw ratios of the charged jets at different electrospinning stages.

View Article and Find Full Text PDF

A series of environment-friendly plasticizers has been synthesized from castor oil through a mild esterification/epoxidation reaction. The modified epoxy acetylated castor oil (EACO) can plastify poly(vinyl chloride) (PVC) efficiently, even better than the commercial plasticizers dioctyl terephthalate (DOTP) and epoxidized soybean oil (ESO), in terms of in tensile strength, migration stability, solvent extraction stability and thermal stability. Specifically, the tensile strength and elongation at break of a PVC sample plastified by epoxy acetylated castor oil (EACO) were 18.

View Article and Find Full Text PDF

A novel nanocomposite scaffold was developed by homogeneous deposition of hydroxyapatite (HAP) on a cellulose nanocrystals (CNCs) matrix suspended in a simulated body fluid (SBF). By adjusting the pH of the SBF, the HAP content in the nanocomposite could be controlled between 15 wt% and 47 wt%. Physical and chemical characteristics of the nanocomposites were analyzed by SEM, FTIR, XRD, SAED, and TEM, which confirmed the successful incorporation of HAP onto the CNCs.

View Article and Find Full Text PDF

The difficulties in sludge dewatering are associated with the high organic content, colloidal materials in sludge solids and the high hydrophilicity of extracellular polymeric substances (EPS). Based on the principle of advanced oxidation processes, waste pulping activated sludge was subjected to potassium permanganate (KMnO) oxidation pretreatment and then the influence and mechanism on sludge dewatering were comprehensively investigated in the present study. At lower KMnO dosage, changes of the physicochemical and rheological characteristics were that: (1) as the sludge disintegration degree increased, the total extractable EPS increased and then the bound water were released; (2) the rheological behavior showed that the yield stress and viscosity decreased while flowability increased and the positive thixotropic behavior weakened; (3) the particle size and microscopic structure were changed insignificantly.

View Article and Find Full Text PDF

Environmentally friendly probe materials for detecting copper ions were studied in this research. Fluorescent emission of quercetin (Q) was observed in the buffer solution (pH = 7.40), and (2-hydroxypropyl)-β-cyclodextrin (CD) could enhance the fluorescence intensity of Q.

View Article and Find Full Text PDF

5-hydroxymethylfurfural (HMF) is a very important versatile platform compound derived from renewable biomass. The functionalized molecule with an aldehyde group, a hydroxyl group and a furan ring provides great potential for the production of a wide variety of valuable chemicals. This review highlights the latest advances in the catalytic conversion of HMF into value-added chemicals by some important reactions including (1) aerobic oxidation of HMF into furan-based aldehydes and acids such as 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), 2,5-diformylfuran (DFF), and furandicarboxylic acid (FDCA), (2) reductive amination of HMF to amine, (3) the synthesis of aromatics by Diels-alder reaction followed by a dehydration reaction, (4) catalytic reduction of HMF into 2,5-bis(hydroxymethyl)furan (BHMF), and 2,5-dimethyl furan (DMF), (5) catalytic oxidation of HMF into maleic anhydride, and some other important transformations.

View Article and Find Full Text PDF

Bio-catalysis is an attractive alternative to replace chemical methods due to its high selectivity and mild reaction conditions. Furfural is an important bio-based platform compound generated from biomass. Herein, the bio-catalytic reduction of furfural (FAL) to furfuryl alcohol (FOL) was performed by using a furfural tolerant strain, NL01.

View Article and Find Full Text PDF

Galvanic corrosion between two different kinds of steel rebars is usually the case in practical engineering. Open circuit potential (OCP), linear polarization resistance (LPR), Tafel polarization, scanning vibrating electrode technique (SVET), scanning electron microscopy (SEM) and reflection digital holographic microscopy (DHM) were used to study the galvanic corrosion of a novel corrosion-resistant steel bar (CR) and low-carbon steel bar (LC) in simulated concrete pore solutions with different pH values and a chloride ion concentration of 5 mol L. The pH of the simulated concrete pore solution had a significant impact on the corrosion behaviour of CR and LC when they were in contact and were attacked by chloride ions.

View Article and Find Full Text PDF

Adsorption of Reactive Blue 19 from aqueous solution by chitin nanofiber-/nanowhisker-based hydrogels.

RSC Adv

April 2018

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuel & Chemicals, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China

Physical hydrogels prepared from partially deacetylated chitin nanofibers/nanowhiskers (DEChNs) were prepared and evaluated as a new adsorbent for Reactive Blue 19 (RB19) solutions. The effects of pH, initial dye concentration, contact time and temperature were investigated. The optimum pH value for the adsorption experiments was found to be 1.

View Article and Find Full Text PDF

Two new types of N-doped ZrO photocatalysts ZON and AZON have been synthesized using ethylenediamine as the nitrogen source by a facile and low-cost sol-gel method. The N-doped ZrO samples have been characterized using various techniques including X-ray diffraction (XRD), UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy (PL) and N adsorption-desorption tests. The XRD analysis shows that the crystallinity of ZON samples calcined at 400-600 °C can be indexed to monoclinic ZrO; while the AZON samples calcined at 400-550 °C only show amorphous diffraction patterns.

View Article and Find Full Text PDF

Sub-nanometer materials have received wide attention due to their unique properties in recent years. Most studies focus on the preparation and properties investigation of the inorganic sub-nanometer materials, while there are few reports on organic especially polymeric sub-nanometer materials such as sub-nanometer fiber due to the obstacles with respect to fabricating such small nanofibers. In this work we prepare PAA nanofibers with diameters ranging from hundreds of nanometers down to sub-nanometer electrospinning from a polyamic acid (PAA) with ultrahigh molecular weight.

View Article and Find Full Text PDF

Co-contamination of antibiotics and heavy metals prevails in the environment. To overcome the obstacle of low metal uptake on activated carbon and to achieve simultaneous removal of tetracycline (TC) and Cu(ii) from water, coconut shell based granular activated carbon (GAC) treated with nitric acid was utilized. GAC property characterization showed that oxidation treatment distinctly decreased the surface area of GAC and significantly increased the content of oxygen containing functional groups.

View Article and Find Full Text PDF