6 results match your criteria: "Nagaoka University of Technology 1603-1[Affiliation]"

Liposome assemblies with a specific shape are potential cell tissue models for studying intercellular communication. Microfluidic channels that can trap liposomes have been constructed to achieve efficient and high-throughput manipulation and observation of liposomes. However, the trapping and alignment of multiple liposomes in a specific space are still challenging because the liposomes are soft and easily ruptured.

View Article and Find Full Text PDF

A novel tactic to synthesize unsymmetrical 3-aryladipic acid esters has been developed via magnesium-promoted reductive coupling of ethyl cinnamates with methyl acrylate. In the present methodology, 3-aryladipic acid derivatives were prepared with good functional group tolerance and a wide substrate scope under very mild reaction conditions in good yields. The application of this reaction to dienic acid esters led to the successful control of the reaction to give 5-aryl-oct-3-enedioic acid esters with high regioselectivity.

View Article and Find Full Text PDF

Woody biomass comprising cellulose, hemicellulose, and lignin has been the focus of considerable attention as an alternative energy source to fossil fuel for various applications. However, lignin has a complex structure, which is difficult to degrade. Typically, lignin degradation is studied using β-O-4 lignin model compounds as lignin contains a large number of β-O-4 bonds.

View Article and Find Full Text PDF

Removal of lithium and uranium from seawater using fly ash and slag generated in the CFBC technology.

RSC Adv

June 2021

Department of Nuclear System Safety Engineering, Graduate School of Engineering, Nagaoka University of Technology 1603-1, Kamitomioka Nagaoka Niigata 940-2188 Japan.

Fly ash and slag were produced as a result of the incineration of municipal sewage sludge using the circulating fluidized bed combustion (CFBC) technology and were examined for the simultaneous recovery of lithium and uranium from seawater in batch adsorption experiments. These waste materials have been characterized in terms of their physicochemical properties using several research methods including particle size distribution, bulk density, SEM-EDS analysis, thermogravimetry, SEM and TEM morphology, BET, specific surface area, pore volume distribution by the BJH method, ATR FT-IR, and zeta potential. The fly ash and slag waste materials showed the following research results for Li-ion recovery: adsorption efficiency 12.

View Article and Find Full Text PDF

An Expression for Velocity Lag in Sediment-Laden Open-Channel Flows Based on Tsallis Entropy Together with the Principle of Maximum Entropy.

Entropy (Basel)

May 2019

Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China.

In the context of river dynamics, some experimental results have shown that particle velocity is different from fluid velocity along the stream-wise direction for uniform sediment-laden open-channel flows; this velocity difference has been termed velocity lag in the literature. In this study, an analytical expression for estimating the velocity lag in open-channel flows was derived based on the Tsallis entropy theory together with the principle of maximum entropy. The derived expression represents the velocity lag as a function of a non-dimensional entropy parameter depending on the average and maximum values of velocity lag from experimental measurements.

View Article and Find Full Text PDF

Provisioning the young is an important form of insect parental care and is believed to improve the survival and growth of the young. Anisolabis maritima Bonelli (Dermaptera: Anisolabididae) is a cosmopolitan species of earwig that shows sub-social behavior in which the females tend clutches of eggs in soil burrows. The defensive and provisioning behaviors of these females were examined in this study.

View Article and Find Full Text PDF