153 results match your criteria: "NUS Nanoscience & Nanotechnology Institute-NanoCore[Affiliation]"
Antib Ther
July 2024
Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
Recombinant antibodies (rAbs) have emerged as a promising solution to tackle antigen specificity, enhancement of immunogenic potential and versatile functionalization to treat human diseases. The development of single chain variable fragments has helped accelerate treatment in cancers and viral infections, due to their favorable pharmacokinetics and human compatibility. However, designing rAbs is traditionally viewed as a genetic engineering problem, with phage display and cell free systems playing a major role in sequence selection for gene synthesis.
View Article and Find Full Text PDFChem Soc Rev
September 2024
Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
The integration of chirality, specifically through the chirality-induced spin selectivity (CISS) effect, into electrocatalytic processes represents a pioneering approach for enhancing the efficiency of energy conversion and storage systems. This review delves into the burgeoning field of chiral electrocatalysis, elucidating the fundamental principles, historical development, theoretical underpinnings, and practical applications of the CISS effect across a spectrum of electrocatalytic reactions, including the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER). We explore the methodological advancements in inducing the CISS effect through structural and surface engineering and discuss various techniques for its measurement, from magnetic conductive atomic force microscopy (mc-AFM) to hydrogen peroxide titration.
View Article and Find Full Text PDFCell Rep
June 2024
Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK. Electronic address:
Xeroderma pigmentosum (XP) is caused by defective nucleotide excision repair of DNA damage. This results in hypersensitivity to ultraviolet light and increased skin cancer risk, as sunlight-induced photoproducts remain unrepaired. However, many XP patients also display early-onset neurodegeneration, which leads to premature death.
View Article and Find Full Text PDFSci Bull (Beijing)
May 2024
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
The Schottky contact which is a crucial interface between semiconductors and metals is becoming increasingly significant in nano-semiconductor devices. A Schottky barrier, also known as the energy barrier, controls the depletion width and carrier transport across the metal-semiconductor interface. Controlling or adjusting Schottky barrier height (SBH) has always been a vital issue in the successful operation of any semiconductor device.
View Article and Find Full Text PDFJ Hepatol
July 2024
Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672. Electronic address:
Background & Aims: Hepatitis B surface antigen (HBsAg) loss or functional cure (FC) is considered the optimal therapeutic outcome for patients with chronic hepatitis B (CHB). However, the immune-pathological biomarkers and underlying mechanisms of FC remain unclear. In this study we comprehensively interrogate disease-associated cell states identified within intrahepatic tissue and matched PBMCs (peripheral blood mononuclear cells) from patients with CHB or after FC, at the resolution of single cells, to provide novel insights into putative mechanisms underlying FC.
View Article and Find Full Text PDFPhys Rev Lett
December 2023
Centre for Nanosciences and Nanotechnology, CNRS, Université Paris-Saclay, UMR 9001, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France.
Energy can be transferred between two quantum systems in two forms: unitary energy-that can be used to drive another system-and correlation energy-that reflects past correlations. We propose and implement experimental protocols to access these energy transfers in interactions between a quantum emitter and light fields. Upon spontaneous emission, we measure the unitary energy transfer from the emitter to the light field and show that it never exceeds half the total energy transfer and is reduced when introducing decoherence.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2023
Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, Sukolilo, Surabaya 60111, Indonesia.
Rational design is an important approach to consider in the development of low-dimensional hybrid organic-inorganic perovskites (HOIPs). In this study, 1-butyl-1-methyl pyrrolidinium (BMP), 1-(3-aminopropyl)imidazole (API), and 1-butyl-3-methyl imidazolium (BMI) serve as prototypical ionic liquid components in bismuth-based HOIPs. Element-sensitive X-ray absorption spectroscopy measurements of BMPBiBr and APIBiBr reveal distinct resonant excitation profiles across the N K-edges, where contrasting peak shifts are observed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2024
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
Single-atom catalysts manifest nearly 100 % atom utilization efficiency, well-defined active sites, and high selectivity. However, their practical applications are hindered by a low atom loading density, uncontrollable location, and ambiguous interaction with the support, thereby posing challenges to maximizing their electrocatalytic performance. To address these limitations, the ability to arrange randomly dispersed single atoms into locally ordered single-atom catalysts (LO-SACs) substantially influences the electronic effect between reactive sites and the support, the synergistic interaction among neighboring single atoms, the bonding energy of intermediates with reactive sites and the complexity of the mechanism.
View Article and Find Full Text PDFElife
September 2023
Division of Science, Yale-NUS College, Singapore, Singapore.
The study of color patterns in the animal integument is a fundamental question in biology, with many lepidopteran species being exemplary models in this endeavor due to their relative simplicity and elegance. While significant advances have been made in unraveling the cellular and molecular basis of lepidopteran pigmentary coloration, the morphogenesis of wing scale nanostructures involved in structural color production is not well understood. Contemporary research on this topic largely focuses on a few nymphalid model taxa (e.
View Article and Find Full Text PDFJ R Soc Interface
May 2023
Biological Sciences, National University of Singapore, 117543 Singapore.
Optical transparency is rare in terrestrial organisms, and often originates through loss of pigmentation and reduction in scattering. The coloured wings of some butterflies and moths have repeatedly evolved transparency, offering examples of how they function optically and biologically. Because pigments are primarily localized in the scales that cover a colourless wing membrane, transparency has often evolved through the complete loss of scales or radical modification of their shape.
View Article and Find Full Text PDFNat Commun
March 2023
Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore.
Ferroelectric hafnia-based thin films have attracted intense attention due to their compatibility with complementary metal-oxide-semiconductor technology. However, the ferroelectric orthorhombic phase is thermodynamically metastable. Various efforts have been made to stabilize the ferroelectric orthorhombic phase of hafnia-based films such as controlling the growth kinetics and mechanical confinement.
View Article and Find Full Text PDFNat Chem Biol
August 2023
Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea.
Although several high-fidelity SpCas9 variants have been reported, it has been observed that this increased specificity is associated with reduced on-target activity, limiting the applications of the high-fidelity variants when efficient genome editing is required. Here, we developed an improved version of Sniper-Cas9, Sniper2L, which represents an exception to this trade-off trend as it showed higher specificity with retained high activity. We evaluated Sniper2L activities at a large number of target sequences and developed DeepSniper, a deep learning model that can predict the activity of Sniper2L.
View Article and Find Full Text PDFACS Nano
March 2023
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore.
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited.
View Article and Find Full Text PDFSTAR Protoc
March 2023
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Self-healing materials exhibit irreplaceable advantages in artificial electronics given their ability to repair from accidental damage, but the self-healing ability is temperature sensitive, limiting their applications in cryogenic environments. Here, we describe steps to fabricate a versatile ionic hydrogel with fast self-healing ability, ultra-stretchability, and stable conductivity, under the temperature ranging from -80°C to 30°C. We also detail steps for characterizing the polymer structure and interactions of the ionic hydrogel, as well as the mechanical, electrical, and self-healing properties.
View Article and Find Full Text PDFNature
January 2023
Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.
Domain-wall nanoelectronics is considered to be a new paradigm for non-volatile memory and logic technologies in which domain walls, rather than domains, serve as an active element. Especially interesting are charged domain walls in ferroelectric structures, which have subnanometre thicknesses and exhibit non-trivial electronic and transport properties that are useful for various nanoelectronics applications. The ability to deterministically create and manipulate charged domain walls is essential to realize their functional properties in electronic devices.
View Article and Find Full Text PDFCancer Lett
March 2023
Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India. Electronic address:
Metastasis accounts for greater than 90% of cancer-related deaths. Despite recent advancements in conventional chemotherapy, immunotherapy, targeted therapy, and their rational combinations, metastatic cancers remain essentially untreatable. The distinct obstacles to treat metastases include their small size, high multiplicity, redundancy, therapeutic resistance, and dissemination to multiple organs.
View Article and Find Full Text PDFNat Nanotechnol
January 2023
Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
Various optical crystals possess permittivity components of opposite signs along different principal directions in the mid-infrared regime, exhibiting exotic anisotropic phonon resonances. Such materials with hyperbolic polaritons-hybrid light-matter quasiparticles with open isofrequency contours-feature large-momenta optical modes and wave confinement that make them promising for nanophotonic on-chip technologies. So far, hyperbolic polaritons have been observed and characterized in crystals with high symmetry including hexagonal (boron nitride), trigonal (calcite) and orthorhombic (α-MoO or α-VO) crystals, where they obey certain propagation patterns.
View Article and Find Full Text PDFNanomicro Lett
November 2022
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P.R. China.
Letter handwriting, especially stroke correction, is of great importance for recording languages and expressing and exchanging ideas for individual behavior and the public. In this study, a biodegradable and conductive carboxymethyl chitosan-silk fibroin (CSF) film is prepared to design wearable triboelectric nanogenerator (denoted as CSF-TENG), which outputs of V ≈ 165 V, I ≈ 1.4 μA, and Q ≈ 72 mW cm.
View Article and Find Full Text PDFNat Chem
February 2023
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
The controllable packing of functional nanoparticles (NPs) into crystalline lattices is of interest in the development of NP-based materials. Here we demonstrate that the size, morphology and symmetry of such supercrystals can be tailored by adjusting the surface dynamics of their constituent NPs. In the presence of excess tetraethylammonium cations, atomically precise [Au(SR)] NPs (where SR is a thiolate ligand) can be crystallized into micrometre-sized hexagonal rod-like supercrystals, rather than as face-centred-cubic superlattices otherwise.
View Article and Find Full Text PDFAdv Mater
January 2023
Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
Immune checkpoint blockade combined with reversal of the immunosuppressive tumor microenvironment (TME) can dramatically enhance anti-tumor immunity, which can be achieved by using multiple-agent therapy. However, the optimal dose and order of administration of different agents remain elusive. To address this dilemma, multiple agents are often grafted together to construct "all-in-one" totipotent drugs, but this usually comes at the cost of a lack of synergy between the agents.
View Article and Find Full Text PDFCurr Opin Biomed Eng
December 2022
CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Bhopal 462026, MP, India.
Antibacterial properties of copper have been known for ages. With the rise of antimicrobial resistance (AMR), hospital-acquired infections, and the current SARS-CoV-2 pandemic, copper and copper-derived materials are being widely researched for healthcare ranging from therapeutics to advanced wound dressing to medical devices. We cover current research that highlights the potential uses of metallic and ionic copper, copper alloys, copper nanostructures, and copper composites as antibacterial, antifungal, and antiviral agents, including those against the SARS-CoV-2 virus.
View Article and Find Full Text PDFACS Nano
September 2022
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China.
Two-dimensional transition metal dichalcogenides (TMDs) possess large second-order optical nonlinearity, making them ideal candidates for miniaturized on-chip frequency conversion devices, all-optical interconnection, and optoelectronic integration components. However, limited by subnanometer thickness, the monolayer TMD exhibits low second harmonic generation (SHG) conversion efficiency (<0.1%) and poor directionality, which hinders their practical applications.
View Article and Find Full Text PDFNature
June 2022
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Barcelona, Spain.
Non-volatile magnetic random-access memories (MRAMs), such as spin-transfer torque MRAM and next-generation spin-orbit torque MRAM, are emerging as key to enabling low-power technologies, which are expected to spread over large markets from embedded memories to the Internet of Things. Concurrently, the development and performances of devices based on two-dimensional van der Waals heterostructures bring ultracompact multilayer compounds with unprecedented material-engineering capabilities. Here we provide an overview of the current developments and challenges in regard to MRAM, and then outline the opportunities that can arise by incorporating two-dimensional material technologies.
View Article and Find Full Text PDFNat Nanotechnol
March 2022
Department of Chemistry, National University of Singapore, Singapore, Singapore.
Small
March 2022
Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore.
In the past few decades, significant progress of the conventional upconversion nanoparticles (UCNPs) based nanoplatform has been achieved in many fields, and with the development of nanoscience and nanotechnology, more and more complex situations need a UCNPs based nanoplatform having multifunctions for specific multimodal or multiplexed applications. Through self-assembly, different UCNPs or UCNPs with other materials could be combined together within an entity. It is more like an ideal UCNPs nanoplatform, a unique system with the properties defined by its individual components as well as by the morphology of the composite.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.