19 results match your criteria: "NRC-Institute for Biological Sciences[Affiliation]"
Cell Rep
December 2012
NRC-Institute for Biological Sciences, University of Ottawa, Ottawa, Ontario, Canada.
Pathogens that reside in the phagosomes of infected cells persist despite the presence of potent T cell responses. We addressed the mechanism of immune evasion by using a mouse model of Salmonella typhimurium (ST). Recombinants of ST were generated that translocated antigen to the cytosol or phagosomes of infected cells.
View Article and Find Full Text PDFBiosci Trends
August 2012
Experimental Neurotherapeutics Laboratory, NRC-Institute for Biological Sciences, National Research Council Canada, Ottawa, Canada.
Membrane rafts, rich in sphingolipids and cholesterol, play an important role in neuronal membrane domain-specific signaling events, maintaining synapses and dendritic spines. The purpose of this study is to examine the neuronal response to membrane raft disruption. Membrane rafts of 8 DIV primary neuronal cultures were isolated based on the resistance to Triton X-100 and ability to float in sucrose gradients.
View Article and Find Full Text PDFCell Death Differ
November 2012
NRC-Institute for Biological Sciences, Ottawa, Ontario, Canada.
Cellular inhibitor of apoptosis proteins (cIAPs) have emerged as important anti-cell death mediators, particularly in cancer. Although they are known to be expressed in immune tissue, their specific immune function remains unclear. We observed that degradation of cIAPs with SMAC mimetic (SM) results in death of primary bone-marrow-derived macrophages.
View Article and Find Full Text PDFPLoS One
December 2010
Department of Biochemistry, NRC-Institute for Biological Sciences, University of Ottawa, Ottawa, Canada.
Background: CD8(+) T cell responses develop rapidly during infection and are swiftly reduced during contraction, wherein >90% of primed CD8(+) T cells are eliminated. The role of apoptotic mechanisms in controlling this rapid proliferation and contraction of CD8(+) T cells remains unclear. Surprisingly, evidence has shown non-apoptotic activation of caspase-3 to occur during in vitro T-cell proliferation, but the relevance of these mechanisms to in vivo CD8(+) T cell responses has yet to be examined.
View Article and Find Full Text PDFAppl Environ Microbiol
June 2010
NRC Institute for Biological Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada.
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been widely used for structural characterization of bacterial endotoxins (lipid A). However, the mass spectrometric behavior of the lipid A molecule is highly dependent on the matrix. Furthermore, this dependence is strongly linked to phosphorylation patterns.
View Article and Find Full Text PDFJ Biol Chem
March 2010
Experimental NeuroTherapeutics Laboratory, Ottawa, Ontario K1A 0R6, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario K1H 8M5, Canada. Electronic address:
Neuropilins (NRPs) are receptors for the major chemorepulsive axonal guidance cue semaphorins (Sema). The interaction of Sema3A/NRP1 during development leads to the collapse of growth cones. Here we show that Sema3A also induces death of cultured cortical neurons through NRP1.
View Article and Find Full Text PDFNeurosci Res
April 2010
Experimental NeuroTherapeutics Laboratory, NRC Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Bldg M-54, Ottawa, ON, Canada K1A 0R6.
Neuropilin 2 (NRP2) is a type I transmembrane protein that binds to distinct members of the class III secreted Semaphorin subfamily. NRP2 plays important roles in repulsive axon guidance, angiogenesis and vasculogenesis through partnering with co-receptors such as vascular endothelial growth factor receptors (VEGFRs) during development. Emerging evidence also suggests that NRP2 contributes to injury response and environment changes in adult brains.
View Article and Find Full Text PDFIt is well known that the flagellin of Campylobacter jejuni is extensively glycosylated by pseudaminic acid and the related acetamindino derivative, in addition to flagellin glycosylation being essential for motility and colonization of host cells. Recently, the use of metabolomics permitted the unequivocal characterization of unique flagellin modifications in Campylobacter, including novel legionaminic acid sugars in Campylobacter coli, which had been impossible to ascertain in earlier studies using proteomics-based approaches. To date, the precise identities of the flagellin glycosylation modifications have only been elucidated for C.
View Article and Find Full Text PDFJ Clin Microbiol
October 2008
NRC Institute for Biological Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6.
Campylobacter jejuni lipooligosaccharide (LOS) can trigger Guillain-Barré syndrome (GBS) due to its similarity to human gangliosides. Rapid and accurate structural elucidation of the LOS glycan of a strain isolated from a GBS patient could help physicians determine the spectrum of anti-ganglioside antibodies likely to be found and therefore provide valuable assistance in establishing an appropriate course of treatment. The ability of implemented mass spectrometry-based approaches in a clinical setting has been limited by the laborious and time-consuming nature of the protocols, typically 3 to 4 days, used to prepare LOS.
View Article and Find Full Text PDFFEBS J
September 2008
NRC-Institute for Biological Sciences, Ottawa, Canada.
Flagellins from Clostridium botulinum were shown to be post-translationally modified with novel glycan moieties by top-down MS analysis of purified flagellin protein from strains of various toxin serotypes. Detailed analyses of flagellin from two strains of C. botulinum demonstrated that the protein is modified by a novel glycan moiety of mass 417 Da in O-linkage.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2008
Experimental NeuroTherapeutics Laboratory, NRC Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Building M54, Ottawa, Ont., Canada.
Strategies to provide neuroprotection and to promote regenerative axonal outgrowth in the injured brain are thwarted by the plethora of axon growth inhibitors and the ligand promiscuity of some of their receptors. Especially, new neurons derived from ischemia-stimulated neurogenesis must integrate this multitude of inhibitory molecular cues, generated as a result of cortical damage, into a functional response. More often than not the response is one of growth cone collapse, axonal retraction and neuronal death.
View Article and Find Full Text PDFEur J Neurosci
August 2007
Experimental NeuroTherapeutics Laboratory and NRC Institute for Biological Sciences, National Research Council of Canada, Ottawa, ON, Canada, K1A 0R6.
Collapsin response mediator proteins (CRMPs) are important brain-specific proteins with distinct functions in modulating growth cone collapse and axonal guidance during brain development. Our previous studies have shown that calpain cleaves CRMP3 in the adult mouse brain during cerebral ischemia [S.T.
View Article and Find Full Text PDFElectrophoresis
May 2007
NRC Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada.
Emerging disinfection by-products (DBPs) in drinking water are an important public health concern. Certain DBPs, such as nitrosamines, are probable carcinogens, and exposure to halogenated DBPs may lead to birth defects. It is difficult to obtain complete separation of nitrosamines by chromatographic techniques.
View Article and Find Full Text PDFMol Cell Biol
March 2007
NRC Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Bldg. M-54, Ottawa, ON, Canada.
The nuclear transcription factor E2F1 plays an important role in modulating neuronal death in response to excitotoxicity and cerebral ischemia. Here, by comparing gene expression in brain cortices from E2F1(+/+) and E2F1(-/-) mice using a custom high-density DNA microarray, we identified a group of putative E2F1 target genes that might be responsible for ischemia-induced E2F1-dependent neuronal death. Neuropilin 1 (NRP-1), a receptor for semaphorin 3A-mediated axon growth cone collapse and retraction, was confirmed to be a direct target of E2F1 based on (i) the fact that the NRP-1 promoter sequence contains an E2F1 binding site, (ii) reactivation of NRP-1 expression in E2F1(-/-) neurons when the E2F1 gene was replaced, (iii) activation of the NRP-1 promoter by E2F1 in a luciferase reporter assay, (iv) electrophoretic mobility gel shift analysis confirmation of the presence of an E2F binding sequence in the NRP-1 promoter, and (v) the fact that a chromatin immunoprecipitation assay showed that E2F1 binds directly to the endogenous NRP-1 promoter.
View Article and Find Full Text PDFAnal Chem
September 2006
NRC Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada K1A 0R6.
N-Glycosylation of proteins is recognized as one of the most common posttranslational modifications in eukaryotes. To date, most glycomics techniques are limited to examining eukaryotic pathways. Technologies capable of characterizing newly described N-linked glycosylation systems in bacteria from biologically relevant samples in an accurate, rapid, and cost-effective manner are needed.
View Article and Find Full Text PDFGene Ther
September 2005
Experimental Therapeutics Laboratory, NRC Institute for Biological Sciences, National Research Council of Canada, 1500 Montreal Road, Ottawa, Ontario, Canada K1A 0R6.
Selective gene expression in neurons is still a challenge. We have developed several expression vectors using a combination of neuron restrictive silencer elements (NRSEs), hypoxia responsive elements (HREs) and CMV minimal promoter (CMVmp). These elements were packaged into replication defective adenovirus to target gene expression selectively in neurons in a hypoxia-regulated manner.
View Article and Find Full Text PDFJ Mol Neurosci
August 2005
Experimental Stroke Group, NRC Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada.
Expression of therapeutic gene products in differentiated human NT2 neurons (NT2/Ns) is being explored for ex vivo gene therapy of human neurological diseases. In this study we determined the efficiency of adenovirus (Ad)-mediated gene delivery into NT2/Ns and characterized the expression of several key receptors known to be required for efficient Ad-mediated gene delivery. Undifferentiated NT2 cells and NT2/Ns were infected by Ad expressing green fluorescent protein at an efficiency of 33% and 17%, respectively percentages much lower than the 92% infectivity obtained from a human non-neuronal cell line A549 cells.
View Article and Find Full Text PDFJ Neurosci Methods
September 2004
Experimental Stroke Group, NRC Institute for Biological Sciences, National Research Council Canada, 1500 Montreal Road Labs, Bldg. M-54, Ottawa, Ont., Canada K1A 0R6.
Targeting of postmitotic neurons selectively for gene delivery poses a challenge. One way to achieve such a selective targeting is to link the gene delivery vector with small ligand-binding polypeptides which have selective affinity to intact neurons. In order to identify such novel neuron selective polypeptides, we screened a phage-display library displaying random 12-mer polypeptides and subtractively bio-panned for clones having selectivity towards cultured mouse cerebellar granule neurons.
View Article and Find Full Text PDFBrain Res Mol Brain Res
August 2003
Experimental Stroke Group, NRC Institute for Biological Sciences, National Research Council of Canada, Building M54, 1500 Montreal Road, Ottawa, ON K1A 0R6, Canada.
The full mechanisms underlying neuronal death following excitotoxic insult remain unclear, despite many in vivo and in vitro studies. Recent work has focused on various signaling molecules and pathways, normally strictly regulated, that can trigger death if perturbed. The transcription factor, E2F1 is pivotal in controlling cell death under stress situations.
View Article and Find Full Text PDF