12 results match your criteria: "NOAA Fisheries-Northwest Fisheries Science Center[Affiliation]"

To address our climate emergency, "we must rapidly, radically reshape society"-Johnson & Wilkinson, All We Can Save. In science, reshaping requires formidable technical (cloud, coding, reproducibility) and cultural shifts (mindsets, hybrid collaboration, inclusion). We are a group of cross-government and academic scientists that are exploring better ways of working and not being too entrenched in our bureaucracies to do better science, support colleagues, and change the culture at our organizations.

View Article and Find Full Text PDF

Quantitative models that simulate the inheritance and evolution of fitness-linked traits offer a method for predicting how environmental or anthropogenic perturbations can affect the dynamics of wild populations. Random mating between individuals within populations is a key assumption of many such models used in conservation and management to predict the impacts of proposed management or conservation actions. However, recent evidence suggests that non-random mating may be underestimated in wild populations and play an important role in diversity-stability relationships.

View Article and Find Full Text PDF

In this article we describe the natural hydrogeomorphological and biogeochemical cycles of dryland fluvial ecosystems that make them unique, yet vulnerable to land use activities and climate change. We introduce Natural Infrastructure in Dryland Streams (NIDS), which are structures naturally or anthropogenically created from earth, wood, debris, or rock that can restore implicit function of these systems. This manuscript further discusses the capability of and functional similarities between beaver dams and anthropogenic NIDS, documented by decades of scientific study.

View Article and Find Full Text PDF

Studies estimating species' distributions require information about animal locations in space and time. Location data can be collected using surveys within a predetermined frame of reference (i.e.

View Article and Find Full Text PDF

One of the desired outcomes of dam decommissioning and removal is the recovery of aquatic and riparian ecosystems. To investigate this common objective, we synthesized information from empirical studies and ecological theory into conceptual models that depict key physical and biological links driving ecological responses to removing dams. We define models for three distinct spatial domains: upstream of the former reservoir, within the reservoir, and downstream of the removed dam.

View Article and Find Full Text PDF

It is now routinely possible to generate genomics-scale datasets for nonmodel species; however, many questions remain about how best to use these data for conservation and management. Some recent genomics studies of anadromous Pacific salmonids have reported a strong association between alleles at one or a very few genes and a key life history trait (adult migration timing) that has played an important role in defining conservation units. Publication of these results has already spurred a legal challenge to the existing framework for managing these species, which was developed under the paradigm that most phenotypic traits are controlled by many genes of small effect, and that parallel evolution of life history traits is common.

View Article and Find Full Text PDF

Genetic monitoring estimates temporal changes in population parameters from molecular marker information. Most populations are complex in structure and change through time by expanding or contracting their geographic range, becoming fragmented or coalescing, or increasing or decreasing density. Traditional approaches to genetic monitoring rely on quantifying temporal shifts of specific population metrics-heterozygosity, numbers of alleles, effective population size-or measures of geographic differentiation such as .

View Article and Find Full Text PDF

While individual growth ultimately reflects the quality and quantity of food resources, intra and interspecific interactions for these resources, as well as individual size, may have dramatic impacts on growth opportunity. Out-migrating anadromous salmonids make rapid transitions between habitat types resulting in large pulses of individuals into a given location over a short period, which may have significant impact on demand for local resources. We evaluated the spatial and temporal variation in IGF-1 concentrations (a proxy for growth rate) and the relationship between size and concentration for juvenile Chinook salmon in Puget Sound, WA, USA, as a function of the relative size and abundance of both Chinook salmon and Pacific herring, a species which commonly co-occurs with salmonids in nearshore marine habitats.

View Article and Find Full Text PDF

Effective population size ( ) is among the most important metrics in evolutionary biology. In natural populations, it is often difficult to collect adequate demographic data to calculate directly. Consequently, genetic methods to estimate have been developed.

View Article and Find Full Text PDF

Identifying causes of structural ecosystem shifts often requires understanding trophic structure, an important determinant of energy flow in ecological communities. In coastal pelagic ecosystems worldwide, increasing jellyfish (Cnidaria and Ctenophora) at the expense of small fish has been linked to anthropogenic alteration of basal trophic pathways. However, this hypothesis remains untested in part because baseline description of fish-jellyfish trophic dynamics, and the environmental features that influence them are lacking.

View Article and Find Full Text PDF

Improving the forecast for biodiversity under climate change.

Science

September 2016

Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.

New biological models are incorporating the realistic processes underlying biological responses to climate change and other human-caused disturbances. However, these more realistic models require detailed information, which is lacking for most species on Earth. Current monitoring efforts mainly document changes in biodiversity, rather than collecting the mechanistic data needed to predict future changes.

View Article and Find Full Text PDF

Domoic acid (DA) is a neuroexcitatory amino acid that is naturally produced by some marine diatom species of the genus Pseudo-nitzschia. Ingestion of DA-contaminated seafood by humans results in a severe neurotoxic disease known as amnesic shellfish poisoning (ASP). Clinical signs of ASP include seizures and neuronal damage from activation of ionotropic glutamate receptors.

View Article and Find Full Text PDF