10 results match your criteria: "NOAA Fisheries Pacific Islands Fisheries Science Center[Affiliation]"

Optimizing automated photo identification for population assessments.

Conserv Biol

January 2025

Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA.

Several legal acts mandate that management agencies regularly assess biological populations. For species with distinct markings, these assessments can be conducted noninvasively via capture-recapture and photographic identification (photo-ID), which involves processing considerable quantities of photographic data. To ease this burden, agencies increasingly rely on automated identification (ID) algorithms.

View Article and Find Full Text PDF

To address our climate emergency, "we must rapidly, radically reshape society"-Johnson & Wilkinson, All We Can Save. In science, reshaping requires formidable technical (cloud, coding, reproducibility) and cultural shifts (mindsets, hybrid collaboration, inclusion). We are a group of cross-government and academic scientists that are exploring better ways of working and not being too entrenched in our bureaucracies to do better science, support colleagues, and change the culture at our organizations.

View Article and Find Full Text PDF

For the 40 years after the end of commercial whaling in 1976, humpback whale populations in the North Pacific Ocean exhibited a prolonged period of recovery. Using mark-recapture methods on the largest individual photo-identification dataset ever assembled for a cetacean, we estimated annual ocean-basin-wide abundance for the species from 2002 through 2021. Trends in annual estimates describe strong post-whaling era population recovery from 16 875 (± 5955) in 2002 to a peak abundance estimate of 33 488 (± 4455) in 2012.

View Article and Find Full Text PDF
Article Synopsis
  • * The dataset covers 13 regions and includes data on 27,956 unique humpback whales from 2001-2021, with an impressive identification accuracy of 97-99% using advanced machine learning.
  • * This resource aims to facilitate collaborative research on humpback whales and their habitats, especially as the ocean undergoes significant ecological changes.
View Article and Find Full Text PDF

Successful conservation and management of marine top predators rely on detailed documentation of spatiotemporal behavior. For cetacean species, this information is key to defining stocks, habitat use, and mitigating harmful interactions. Research focused on this goal is employing methodologies such as visual observations, tag data, and passive acoustic monitoring (PAM) data.

View Article and Find Full Text PDF

Passive acoustic monitoring (PAM) has proven a powerful tool for the study of marine mammals, allowing for documentation of biologically relevant factors such as movement patterns or animal behaviors while remaining largely non-invasive and cost effective. From 2008-2019, a set of PAM recordings covering the frequency band of most toothed whale (odontocete) echolocation clicks were collected at sites off the islands of Hawai'i, Kaua'i, and Pearl and Hermes Reef. However, due to the size of this dataset and the complexity of species-level acoustic classification, multi-year, multi-species analyses had not yet been completed.

View Article and Find Full Text PDF

The remote and uninhabited Northwestern Hawaiian Islands (NWHI) contain 70% of the shallow water coral reefs in the United States and are regularly exposed to derelict fishing nets. These nets snag on the shallow reefs, damaging or killing benthic communities. However, no data exist to quantify this impact.

View Article and Find Full Text PDF

High seas oceanic ecosystems are considered important habitat for juvenile sea turtles, yet much remains cryptic about this important life-history period. Recent progress on climate and fishery impacts in these so-called lost years is promising, but the developmental biogeography of hawksbill sea turtles (Eretmochelys imbricata) has not been widely described in the Pacific Ocean. This knowledge gap limits the effectiveness of conservation management for this globally endangered species.

View Article and Find Full Text PDF

The Galapagos Sailfin grouper, Mycteroperca olfax, locally known as bacalao and listed as vulnerable by the IUCN, is culturally, economically, and ecologically important to the Galapagos archipelago and its people. It is regionally endemic to the Eastern Tropical Pacific, and, while an important fishery resource that has shown substantial declines in recent years, to date no effective management regulations are in place to ensure the sustainability of the Galapagos fishery for this species. Previous estimates of longevity and size at maturity for bacalao are inconsistent with estimates for congeners, which brings into question the accuracy of prior estimates.

View Article and Find Full Text PDF

Large amounts of derelict fishing gear accumulate and cause damage to shallow coral reefs of the Northwestern Hawaiian Islands (NWHI). To facilitate maintenance of reefs cleaned during 1996-2005 removal efforts, we identify likely high-density debris areas by assessing reef characteristics (depth, benthic habitat type, and energy regime) that influence sub-regional debris accumulation. Previously cleaned backreef and lagoonal reefs at two NWHI locations were resurveyed for accumulated debris using two survey methods.

View Article and Find Full Text PDF