2,232 results match your criteria: "NASA-Ames Research Center[Affiliation]"

The Nutrient-upgraded Rodent Food Bar (NuRFB) is the standard diet for mice in NASA's Rodent Research Project aboard the International Space Station (ISS). Given the nature of spaceflight and the lengthy production process of the food bars, a shelf-life assessment was conducted to evaluate nutritional stability over time (ranging from 0 to 27 months) and under different storage conditions (refrigerated, ambient, and refrigerated + ambient), where ambient is 22-23 °C. Lipid oxidation markers and fat- and water-soluble vitamins were assessed under various time and temperature conditions using AOAC International methods.

View Article and Find Full Text PDF

As we assess the habitability of other worlds, we are limited by being able to only study terrestrial life adapted to terrestrial conditions. The environments found on Earth, though tremendously diverse, do not approach the multitude of potentially habitable environments beyond Earth, and so limited terrestrial adaptive capabilities tell us little about the fundamental biochemical boundaries of life. One approach to this problem is to use experimental laboratory evolution to adapt microbes to these novel environmental conditions.

View Article and Find Full Text PDF

Solar Wind Irradiation of Methane and Methane-Water Ices: A Molecular Dynamics Approach.

ACS Earth Space Chem

December 2024

Thermal Protection Materials Branch, NASA Ames Research Center, Moffett Field, California 94035, United States.

Molecular dynamics simulations were performed to characterize reaction products, resulting from solar wind irradiation, namely, H, of methane and methane-water ices. In our approach, we used seven 0.829 keV H (total energy of 5.

View Article and Find Full Text PDF

Anharmonic computations reveal an intense, narrow (20 cm, 0.043 μm) absorption feature at approximately 2160 cm (4.63 μm) in the vibrational spectra of 14 prototypical singly isocyano-substituted polycyclic aromatic hydrocarbons (NC-PAHs) attributed to the NC stretching mode.

View Article and Find Full Text PDF

The effects of galactic cosmic radiation on reproductive physiology remain largely unknown. We determined the impact of near-continuous low-dose-rate Californium-252 neutron irradiation (1 mGy/day) as a space-relevant analog on litter size and number of resorptions at embryonic day (E) 12.5 (n = 19 radiated dams, n = 20 controls) and litter size, number of resorptions, fetal growth, and placental signaling and transcriptome (RNA sequencing) at E18.

View Article and Find Full Text PDF

Men and women have different cardiovascular responses to spaceflight; however, few studies have focused on direct comparisons between sexes. We investigated the mechanisms of aortic stiffening in socially and sexually mature 20-week-old male and female Sprague Dawley (SD) rats exposed to hindlimb unloading (HLU) for 14 days. Pulse wave velocity (PWV) was greater in the aortic arch of females after HLU versus control females (n = 6-8).

View Article and Find Full Text PDF

Infrared spectroscopy of α-pinene ices irradiated by energetic ions at temperatures relevant to astronomical environments.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, Rio de Janeiro 22451-900, RJ, Brazil.

The effects of cosmic-ray bombardment of chiral molecules in the interstellar medium are simulated in the laboratory by performing radiolysis experiments of pure α-pinene ices at four different temperatures. The identification and significance of α-pinene have not been fully understood because of the insufficient amount of spectral information of these compounds at low temperatures. A comparison of the temperature dependence of the mid-infrared spectra of pure α-pinene ices before and after irradiation its irradiation by 61.

View Article and Find Full Text PDF

We describe the latest version of the NASA Earth eXchange Downscaled Climate Projections 30 arcseconds (NEX-DCP30-CMIP6). The archive contains downscaled historical and future projections for 1950-2100 based on output from Phase 6 of the Climate Model Intercomparison Project (CMIP6). The downscaled products were produced using a daily variant of the monthly bias correction/spatial disaggregation (BCSD) method and are at 30-arcsecond horizontal resolution.

View Article and Find Full Text PDF

Outbreaks of COVID-19 in humans, Dutch elm disease in forests, and highly pathogenic avian influenza in wild birds and poultry highlight the disruptive impacts of infectious diseases on public health, ecosystems and economies. Infectious disease dynamics often depend on environmental conditions that drive occurrence, transmission and outbreaks. Remote sensing can contribute to infectious disease research and management by providing standardized environmental data across broad spatial and temporal extents, often at no cost to the user.

View Article and Find Full Text PDF

Strong anharmonic coupling between vibrational states in polycyclic aromatic hydrocarbons (PAH) produces highly mixed vibrational transitions that challenge the current understanding of the nature of the astronomical mid-infrared PAH emission bands. Traditionally, PAH emission bands have been characterized as either aromatic or aliphatic, and this assignment is used to determine the fraction of aliphatic carbon in astronomical sources. In reality, each of the transitions previously utilized for such an attribution is highly mixed with contributions from both aliphatic and aromatic CH motions as well as non-CH motions such as CC stretches.

View Article and Find Full Text PDF
Article Synopsis
  • Ice accumulation on aircraft surfaces is dangerous, prompting researchers to develop coatings to reduce ice adhesion.
  • This study examines how ice interacts with different materials like graphite, boron nitride, and polymer substrates using molecular dynamics simulations, focusing on a watery layer that forms at the ice-substrate interface.
  • Findings show that the polymer substrate creates a thicker layer of disordered water (quasi-liquid layer) compared to flat surfaces, enhancing the disruption of ice's structure through effective hydrogen bonding with the substrate's oxygen atoms.
View Article and Find Full Text PDF

Phonon Screening of Excitons in Atomically Thin Semiconductors.

Phys Rev Lett

November 2024

Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.

Atomically thin semiconductors, encompassing both 2D materials and quantum wells, exhibit a pronounced enhancement of excitonic effects due to geometric confinement. Consequently, these materials have become foundational platforms for the exploration and utilization of excitons. Recent ab initio studies have demonstrated that phonons can substantially screen electron-hole interactions in bulk semiconductors and strongly modify the properties of excitons.

View Article and Find Full Text PDF

Using a new approach that constrains thermodynamic modeling of aerosol composition with measured gas-to-particle partitioning of inorganic nitrate, we estimate the acidity levels for aerosol sampled in the South Korean planetary boundary layer during the NASA/NIER KORUS-AQ field campaign. The pH (mean ± 1σ = 2.43±0.

View Article and Find Full Text PDF

Long-duration spaceflight beyond Earth's magnetosphere poses serious health risks, including muscle atrophy, bone loss, liver and kidney damage, and the Spaceflight-Associated Neuro-ocular Syndrome (SANS). RNA-seq of mice aboard the International Space Station (ISS) for 37 days revealed extraordinary hypermutation in tissue-specific genes, with guanine base conversion predominating, potentially contributing to spaceflight-associated health risks. Our results suggest that the genome-wide accelerated mutation that we measured, seemingly independent of radiation dose, was induced by oxidative damage from higher atmospheric carbon dioxide (CO) levels and increased reactive oxygen species (ROS) on the ISS.

View Article and Find Full Text PDF

A giant planet transiting a 3-Myr protostar with a misaligned disk.

Nature

November 2024

Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

Astronomers have found more than a dozen planets transiting stars that are 10-40 million years old, but younger transiting planets have remained elusive. The lack of such discoveries may be because planets have not fully formed at this age or because our view is blocked by the protoplanetary disk. However, we now know that many outer disks are warped or broken; provided the inner disk is depleted, transiting planets may thus be visible.

View Article and Find Full Text PDF

Silver(I)-Mediated 2D DNA Nanostructures.

Small

November 2024

Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA.

Structural DNA nanotechnology enables the self-organization of matter at the nanometer scale, but approaches to expand the inorganic and electrical functionality of these scaffolds remain limited. Developments in nucleic acid metallics have enabled the incorporation of site-specific metal ions in DNA duplexes and provide a means of functionalizing the double helix with atomistic precision. Here a class of 2D DNA nanostructures that incorporate the cytosine-Ag-cytosine (dC:Ag:dC) base pair as a chemical trigger for self-assembly is described.

View Article and Find Full Text PDF

Space biology and health data are critical for the success of deep space missions and sustainable human presence off-world. At the core of effectively managing biomedical risks is the commitment to open science principles, which ensure that data are findable, accessible, interoperable, reusable, reproducible and maximally open. The 2021 integration of the Ames Life Sciences Data Archive with GeneLab to establish the NASA Open Science Data Repository significantly enhanced access to a wide range of life sciences, biomedical-clinical and mission telemetry data alongside existing 'omics data from GeneLab.

View Article and Find Full Text PDF

Both rapid eye movement and non-rapid eye movement sleep are important for cognitive function and well-being, yet few studies have examined whether human sleep architecture is affected by long-duration spaceflight. We recorded 256 nights of sleep from five crew members before (n = 112 nights), during (n = 83 nights) and after (n = 61 nights) ~6-month missions aboard the Mir space station, using the Nightcap sleep monitor. We compared sleep outcomes (including total sleep time, efficiency, latency, rapid eye movement and non-rapid eye movement) during spaceflight with those on Earth.

View Article and Find Full Text PDF

RadLab: An open science resource for radiation studies relevant to human spaceflight.

Life Sci Space Res (Amst)

November 2024

Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, CA. Electronic address:

In response to the growing need of the space life sciences community for a publicly available single access point for radiation physics data relevant to human space exploration, an open data repository and analysis platform, RadLab, has been developed. RadLab consists of a database and a user-friendly data retrieval, visualization, and analysis toolkit, including a graphical user interface (GUI) and an application programming interface (API). RadLab complements the space biology data in the NASA Open Science Data Repository (OSDR) and aims to provide open, centralized access to radiation physics data relevant to spaceflight.

View Article and Find Full Text PDF

Remote science at sea with remotely operated vehicles.

Front Robot AI

October 2024

Florida Institute of Oceanography, University of South Florida, St. Petersburg, FL, United States.

Conducting sea-going ocean science no longer needs to be limited to the number of berths on a ship given that telecommunications, computing, and networking technologies onboard ships have become familiar mechanisms for expanding scientists' reach from onshore. The oceanographic community routinely works with remotely operated vehicles (ROVs) and pilots to access real-time video and data from the deep sea, while onboard a ship. The extension of using an ROV and its host vessel's live-streaming capabilities has been popularized for almost 3 decades as a telepresence technology.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) have been implicated in human disorders, from cancers to infectious diseases. Targeting miRNAs or their target genes with small molecules offers opportunities to modulate dysregulated cellular processes linked to diseases. Yet, predicting small molecules associated with miRNAs remains challenging due to the small size of small molecule-miRNA datasets.

View Article and Find Full Text PDF

Recent research has shown that wavefunction evolution in real and imaginary time can generate quantum subspaces with significant utility for obtaining accurate ground state energies. Inspired by these methods, we propose combining quantum subspace techniques with the variational quantum eigensolver (VQE). In our approach, the parameterized quantum circuit is divided into a series of smaller subcircuits.

View Article and Find Full Text PDF

Pioneering the use of the Geostationary Environment Monitoring Spectrometer's (GEMS) observation data in air quality modeling, we adjusted Asia's NO emissions inventory by leveraging the instrument's unprecedented sampling frequency. GEMS tropospheric NO columns served as top-down constraints, guiding our Bayesian inversion to constrain NO emissions in Asia during spring 2022. This enabled the model to better capture the diurnal variation in NO emissions, such as its morning rush hour peak, particularly when more retrievals were available each day, improving the simulation accuracy to a certain extent.

View Article and Find Full Text PDF