4 results match your criteria: "NA Vaccine Institute[Affiliation]"

Lung tissue-resident memory T (T) cells induced by influenza vaccination are crucial for heterosubtypic immunity upon re-exposure to the influenza virus, enabling rapid and robust responses upon reactivation. To enhance the efficacy of influenza vaccines, we induce the generation of lung T cells following intranasal vaccination with a commercial influenza vaccine adjuvanted with NexaVant (NVT), a TLR3 agonist-based adjuvant. We demonstrate that intranasal immunization with the NVT-adjuvanted vaccine provides improved protection against influenza virus infections by inducing the generation of CD4 T cells in the lungs in a type I interferon-dependent manner.

View Article and Find Full Text PDF

Nexavant was reported as an alternative to the TLR3 agonist of Poly(I:C) and its derivatives. The physicochemical properties, signaling pathways, anti-cancer effects, and mechanisms of Nexavant were investigated. The distinctive characteristics of Nexavant compared to that of Poly(I:C) were demonstrated by precise quantification, enhanced thermostability, and increased resistance to RNase A.

View Article and Find Full Text PDF

A novel defined TLR3 agonist as an effective vaccine adjuvant.

Front Immunol

February 2023

Interdisciplinary Program in Genetic Engineering, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.

Synthetic double-stranded RNA analogs recognized by Toll-like receptor 3 (TLR3) are an attractive adjuvant candidate for vaccines, especially against intracellular pathogens or tumors, because of their ability to enhance T cell and antibody responses. Although poly(I:C) is a representative dsRNA with potent adjuvanticity, its clinical application has been limited due to heterogeneous molecular size, inconsistent activity, poor stability, and toxicity. To overcome these limitations, we developed a novel dsRNA-based TLR3 agonist named NexaVant (NVT) by using PCR-coupled bidirectional transcription.

View Article and Find Full Text PDF

High Molecular Weight Chitosan-Complexed RNA Nanoadjuvant for Effective Cancer Immunotherapy.

Pharmaceutics

December 2019

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.

Nucleic acid-based adjuvants have recently emerged as promising candidates for use in cancer vaccines to induce tumor-suppressing immune cells. In this study, we tested whether complexation of a nucleic acid-based adjuvant with chitosan (CTS) modulates immune adjuvant functions. As a nucleic acid-based adjuvant, we used toll-like receptor 3-recognizing RNA adjuvant (RA).

View Article and Find Full Text PDF