A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvbsc2gsllj9l6ltuq9gell9cljp4doi5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

N.N. Semyonov Institute of Chemical Phy... Publications | LitMetric

5 results match your criteria: "N.N. Semyonov Institute of Chemical Physics[Affiliation]"

Signaling and physiological activities of the crystalline tetranitrosyl iron complex with thiosulfate-a NO-donor (TNICthio) were first studied on human cells in conditions of mono and combined application of HS and antioxidants. Comparative studies were performed on three cell lines: normal and leukemic T lymphocytes (Jurkat cells) and breast cancer MCF-7 cells (human breast adenocarcinoma). Also established was a high biological activity of TNICthio, as well as correlation between the levels of reactive oxygen species generation, the formation of double-strand breaks (DSB) in DNA and cell proliferation.

View Article and Find Full Text PDF

It has been found that heating of solutions of the binuclear form of dinitrosyl iron complexes (B-DNIC) with glutathione in a degassed Thunberg apparatus (рН 1.0, 70°С, 6 h) results in their decomposition with a concomitant release of four gaseous NO molecules per one B-DNIC. Further injection of air into the Thunberg apparatus initiates fast oxidation of NO to NO₂ and formation of two GS-NO molecules per one B-DNIC.

View Article and Find Full Text PDF

The ability of mononuclear dinitrosyl iron commplexes (M-DNICs) with thiolate ligands to act as NO donors and to trigger S-nitrosation of thiols can be explain only in the paradigm of the model of the [Fe(+)(NO(+))(2)] core ({Fe(NO)(2)}(7) according to the Enemark-Feltham classification). Similarly, the {(RS(-))(2)Fe(+)(NO(+))(2)}(+) structure describing the distribution of unpaired electron density in M-DNIC corresponds to the low-spin (S = 1/2) state with a d(7) electron configuration of the iron atom and predominant localization of the unpaired electron on MO(d(z2)) and the square planar structure of M-DNIC. On the other side, the formation of molecular orbitals of M-DNIC including orbitals of the iron atom, thiolate and nitrosyl ligands results in a transfer of electron density from sulfur atoms to the iron atom and nitrosyl ligands.

View Article and Find Full Text PDF

It is hypothesized that in cells producing nitric oxide (NO), NO and its endogenous derivatives (low-molecular S-nitrosothiols and dinitrosyl iron complexes (DNIC) with thiol-containing ligands) can move in the intracellular space not only by diffusion but also in an autowave mode. This hypothesis is based on the previously obtained data on autowave distribution of DNIC with glutathione following application of a drop of a solution of Fe(2+)+glutathione onto the surface of a thin layer of a S-nitrosoglutathione solution. The appearance of autowaves is conditioned by a self-regulating self-sustained system arising in the process.

View Article and Find Full Text PDF

Electron paramagnetic resonance and optical spectrophotometric studies have demonstrated that low-molecular dinitrosyl iron complexes (DNICs) with cysteine or glutathione exist in aqueous solutions in the form of paramagnetic mononuclear (capital EM, Cyrillic-DNICs) and diamagnetic binuclear complexes (B-DNICs). The latter represent Roussin's red salt esters and can be prepared by treatment of aqueous solutions of Fe(2+) and thiols (small er, Cyrilliccapital EN, Cyrillic 7.4) with gaseous nitric oxide (NO) at the thiol:Fe(2+) ratio 1:1.

View Article and Find Full Text PDF