23 results match your criteria: "Museum of Vertebrate Zoology University of California[Affiliation]"

Phenotypic covariation among suites of traits may constrain or promote diversification both within and between species, yet few studies have empirically tested this relationship. In this study, we investigate whether phenotypic covariation of craniofacial traits is associated with diversification in an adaptive radiation of pupfishes found only on San Salvador Island, Bahamas (SSI). The radiation includes generalist, durophagous, and lepidophagous species.

View Article and Find Full Text PDF

Populations may adapt to similar environments via parallel or non-parallel genetic changes, but the frequency of these alternative mechanisms and underlying contributing factors are still poorly understood outside model systems. We used QTL mapping to investigate the genetic basis of highly divergent craniofacial traits between the scale-eater () and molluscivore () pupfish adapting to two different hypersaline lake environments on San Salvador Island, Bahamas. We lab-reared F2 scale-eater x molluscivore intercrosses from two different lake populations, estimated linkage maps, scanned for significant QTL for 29 skeletal and craniofacial traits, female mate preference, and sex.

View Article and Find Full Text PDF

Organisms within freshwater and marine environments are subject to a diverse range of often co-occurring abiotic and biotic stressors. Despite growing awareness of the complex multistress systems at play in aquatic ecosystems, many questions remain regarding how simultaneous stressors interact with one another and jointly impact aquatic species. We looked at multistress interactions in a protected stream ecosystem in Mendocino County, California.

View Article and Find Full Text PDF

Lizard diets are highly diverse and have contributed to the diversification, biogeographical distributions, and evolution of novel traits across this global radiation. Many parts of a lizard's ecology-including habitat preferences, foraging modes, predation risks, interspecific competition, and thermal constraints, among others-interact to shape diets, and dietary niche partitioning simultaneously contributes to co-occurrence within communities. We used DNA metabarcoding of fecal samples to identify prey items in the diets of three sympatric lizards in the Madrean Sky Islands of Arizona, USA.

View Article and Find Full Text PDF
Article Synopsis
  • Resource managers often believe increasing genetic diversity is crucial for preventing extinction in small populations, but this might not always be necessary.
  • A study on the peregrine falcon showed that nonmigratory and island populations had lower genomic diversity and higher inbreeding, yet inbreeding might not be a significant threat for all populations.
  • The findings suggest that factors like population decline history may be more important to consider than just genetic diversity when making conservation decisions.
View Article and Find Full Text PDF

The relative influence of geography, currents, and environment on gene flow within sessile marine species remains an open question. Detecting subtle genetic differentiation at small scales is challenging in benthic populations due to large effective population sizes, general lack of resolution in genetic markers, and because barriers to dispersal often remain elusive. Marine lakes can circumvent confounding factors by providing discrete and replicated ecosystems.

View Article and Find Full Text PDF

Restriction-site-associated DNA sequencing (RADseq) has become an accessible way to obtain genome-wide data in the form of single-nucleotide polymorphisms (SNPs) for phylogenetic inference. Nonetheless, how differences in RADseq methods influence phylogenetic estimation is poorly understood because most comparisons have largely relied on conceptual predictions rather than empirical tests. We examine how differences in ddRAD and 2bRAD data influence phylogenetic estimation in two non-model frog groups.

View Article and Find Full Text PDF

The White Sands lizards of New Mexico are a rare and classic example of convergent evolution where three species have evolved blanched coloration on the white gypsum dunes. Until now, no geological replicate of the pattern had been described. However, one of the White Sands species, the lesser earless lizard (), has been discovered to also inhabit the Salt Basin Dunes of Texas, where it has also evolved a blanched morph.

View Article and Find Full Text PDF

The relationship between ecology and morphology is a cornerstone of evolutionary biology, and quantifying variation across environments can shed light on processes that give rise to biodiversity. Three morphotypes of the Steller's Jay () occupy different ecoregions in western North America, which vary in climate and landcover. These morphotypes (Coastal, Interior, Rocky Mountain) differ in size, plumage coloration, and head pattern.

View Article and Find Full Text PDF

Natural history collections provide an unparalleled resource for documenting population responses to past anthropogenic change. However, in many cases, traits measured on specimens may vary temporally in response to a number of different anthropogenic pressures or demographic processes. While teasing apart these different drivers is challenging, approaches that integrate analyses of spatial and temporal series of specimens can provide a robust framework for examining whether traits exhibit common responses to ecological variation in space and time.

View Article and Find Full Text PDF

The effect of the environment on fitness in natural populations is a fundamental question in evolutionary biology. However, experimental manipulations of both environment and phenotype at the same time are rare. Thus, the relative importance of the competitive environment versus intrinsic organismal performance in shaping the location, height, and fluidity of fitness peaks and valleys remains largely unknown.

View Article and Find Full Text PDF

Environments are heterogeneous in space and time, and the permeability of landscape and climatic barriers to gene flow may change over time. When barriers are present, they may start populations down the path toward speciation, but if they become permeable before the process of speciation is complete, populations may once more merge. In Southern Africa, aridland biomes play a central role in structuring the organization of biodiversity.

View Article and Find Full Text PDF

Adaptation can occur with or without genome-wide differentiation. If adaptive loci are linked to traits involved in reproductive isolation, genome-wide divergence is likely, and speciation is possible. However, adaptation can also lead to phenotypic differentiation without genome-wide divergence if levels of ongoing gene flow are high.

View Article and Find Full Text PDF

The dentition is an extremely important organ in mammals with variation in timing and sequence of eruption, crown morphology, and tooth size enabling a range of behavioral, dietary, and functional adaptations across the class. Within this suite of variable mammalian dental phenotypes, relative sizes of teeth reflect variation in the underlying genetic and developmental mechanisms. Two ratios of postcanine tooth lengths capture the relative size of premolars to molars (premolar-molar module, PMM), and among the three molars (molar module component, MMC), and are known to be heritable, independent of body size, and to vary significantly across primates.

View Article and Find Full Text PDF

Behaviors that increase an individual's exposure to pathogens are expected to have important effects on immunoactivity. Because sexual reproduction typically requires close contact among conspecifics, mating systems provide an ideal opportunity to study the immunogenetic correlates of behaviors with high versus low risks of pathogen exposure. Despite logical links between polygynandrous mating behavior, increased pathogen exposure, and greater immunoactivity, these relationships have seldom been examined in nonhuman vertebrates.

View Article and Find Full Text PDF

Intraspecific color variation has long fascinated evolutionary biologists. In species with bright warning coloration, phenotypic diversity is particularly compelling because many factors, including natural and sexual selection, contribute to intraspecific variation. To better understand the causes of dramatic phenotypic variation in Malagasy poison frogs, we quantified genetic structure and color and pattern variation across three closely related species, , , and .

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on genetic diversity in California voles by examining introgression between two closely related lineages in a contact zone, testing whether nuclear gene flow is greater than mitochondrial gene flow.
  • Findings showed that the two lineages diverged relatively recently (8.5-54k years ago), and there was no evidence of hybrid individuals or consistent gene flow at the contact zone, with mitochondrial markers indicating past hybridization.
  • The research highlights contrasting patterns of introgression between mitochondrial and nuclear markers, prompting further investigation into isolating mechanisms like habitat use and mate choice to understand genetic boundaries better.
View Article and Find Full Text PDF

Laboratory techniques for high-throughput sequencing have enhanced our ability to generate DNA sequence data from millions of natural history specimens collected prior to the molecular era, but remain poorly tested at shallower evolutionary time scales. Hybridization capture using restriction site-associated DNA probes (hyRAD) is a recently developed method for population genomics with museum specimens. The hyRAD method employs fragments produced in a restriction site-associated double digestion as the basis for probes that capture orthologous loci in samples of interest.

View Article and Find Full Text PDF

Investigating secondary contact of historically isolated lineages can provide insight into how selection and drift influence genomic divergence and admixture. Here, we studied the genomic landscape of divergence and introgression following secondary contact between lineages of the Western Diamondback Rattlesnake () to determine whether genomic regions under selection in allopatry also contribute to reproductive isolation during introgression. We used thousands of nuclear loci to study genomic differentiation between two lineages that have experienced recent secondary contact following isolation, and incorporated sampling from a zone of secondary contact to identify loci that are resistant to gene flow in hybrids.

View Article and Find Full Text PDF

Critical thermal limits are thought to be correlated with the elevational distribution of species living in tropical montane regions, but with upper limits being relatively invariant compared to lower limits. To test this hypothesis, we examined the variation of thermal physiological traits in a group of terrestrial breeding frogs (Craugastoridae) distributed along a tropical elevational gradient. We measured the critical thermal maximum (CT ;  = 22 species) and critical thermal minimum (CT ;  = 14 species) of frogs captured between the Amazon floodplain (250 m asl) and the high Andes (3,800 m asl).

View Article and Find Full Text PDF

For vast areas of the globe and large parts of the tree of life, data needed to inform trait diversity is incomplete. Such trait data, when fully assembled, however, form the link between the evolutionary history of organisms, their assembly into communities, and the nature and functioning of ecosystems. Recent efforts to close data gaps have focused on collating trait-by-species databases, which only provide species-level, aggregated value ranges for traits of interest and often lack the direct observations on which those ranges are based.

View Article and Find Full Text PDF

Species interactions, and their fitness consequences, vary across the geographic range of a coevolutionary relationship. This spatial heterogeneity in reciprocal selection is predicted to generate a geographic mosaic of local adaptation, wherein coevolutionary traits are phenotypically variable from one location to the next. Under this framework, allopatric populations should lack variation in coevolutionary traits due to the absence of reciprocal selection.

View Article and Find Full Text PDF