78 results match your criteria: "Multidisciplinary Institute of Cell Biology[Affiliation]"

Selective Colocalization of GHSR and GLP-1R in a Subset of Hypothalamic Neurons and Their Functional Interaction.

Endocrinology

November 2024

Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina.

The GH secretagogue receptor (GHSR) and the glucagon-like peptide-1 receptor (GLP-1R) are G protein-coupled receptors with critical, yet opposite, roles in regulating energy balance. Interestingly, these receptors are expressed in overlapping brain regions. However, the extent to which they target the same neurons and engage in molecular crosstalk remains unclear.

View Article and Find Full Text PDF

Growth hormone secretagogue receptor and cannabinoid receptor type 1 intersection in the mouse brain.

Brain Struct Funct

December 2024

Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina.

The growth hormone secretagogue receptor (GHSR) and the cannabinoid receptor type 1 (CB1R) are G-protein coupled receptors highly expressed in the brain and involved in critical regulatory processes, such as energy homeostasis, appetite control, reward, and stress responses. GHSR mediates the effects of both ghrelin and liver-expressed antimicrobial peptide 2, while CB1R is targeted by cannabinoids. Strikingly, both receptors mediate their effects by acting on common brain areas and their individual roles have been well characterized.

View Article and Find Full Text PDF

Hypothalamic tanycytes internalize ghrelin from the cerebrospinal fluid: Molecular mechanisms and functional implications.

Mol Metab

December 2024

Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina; Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden. Electronic address:

Objective: The peptide hormone ghrelin exerts potent effects in the brain, where its receptor is highly expressed. Here, we investigated the role of hypothalamic tanycytes in transporting ghrelin across the blood-cerebrospinal fluid (CSF) interface.

Methods: We investigated the internalization and transport of fluorescent ghrelin (Fr-ghrelin) in primary cultures of rat hypothalamic tanycytes, mouse hypothalamic explants, and mice.

View Article and Find Full Text PDF

High fat diets have been used as complementary treatments for seizure disorders for more than a century. Moreover, many fatty acids and derivatives, including the broad-spectrum antiseizure medication valproic acid, have been explored and used as pharmacological agents to treat epilepsy. In this work, we have explored the anticonvulsant potential of a large library of fatty acids and fatty acid derivatives, the LIPID MAPS Structure Database, using structure-based virtual screening to assess their ability to block the voltage-gated sodium channel 1.

View Article and Find Full Text PDF

The Pattern of GH Action in the Mouse Brain.

Endocrinology

May 2024

Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil.

GH acts in numerous organs expressing the GH receptor (GHR), including the brain. However, the mechanisms behind the brain's permeability to GH and how this hormone accesses different brain regions remain unclear. It is well-known that an acute GH administration induces phosphorylation of the signal transducer and activator of transcription 5 (pSTAT5) in the mouse brain.

View Article and Find Full Text PDF

Parkinson's disease is characterized by a progressive accumulation of alpha-Synuclein (αSyn) neuronal inclusions called Lewy bodies in the nervous system. Lewy bodies can arise from the cell-to-cell propagation of αSyn, which can occur via sequential steps of secretion and uptake. Here, by fusing a removable short signal peptide to the N-terminus of αSyn, we developed a novel mouse model with enhanced αSyn secretion and cell-to-cell transmission.

View Article and Find Full Text PDF

Ghrelin Action in the PVH of Male Mice: Accessibility, Neuronal Targets, and CRH Neurons Activation.

Endocrinology

September 2023

Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires 1900, Argentina.

The hormone ghrelin displays several well-characterized functions, including some with pharmaceutical interest. The receptor for ghrelin, the growth hormone secretagogue receptor (GHSR), is expressed in the hypothalamic paraventricular nucleus (PVH), a critical hub for the integration of metabolic, neuroendocrine, autonomic, and behavioral functions. Here, we performed a neuroanatomical and functional characterization of the neuronal types mediating ghrelin actions in the PVH of male mice.

View Article and Find Full Text PDF

Ghrelin's orexigenic action in the lateral hypothalamic area involves indirect recruitment of orexin neurons and arcuate nucleus activation.

Psychoneuroendocrinology

October 2023

Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina; Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden. Electronic address:

Objective: Ghrelin is a potent orexigenic hormone, and the lateral hypothalamic area (LHA) has been suggested as a putative target mediating ghrelin's effects on food intake. Here, we aimed to investigate the presence of neurons expressing ghrelin receptor (a.k.

View Article and Find Full Text PDF

Secretory carrier-associated membrane protein 5 regulates cell-surface targeting of T-type calcium channels.

Channels (Austin)

December 2023

Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.

Missense mutations in the human secretary carrier-associated membrane protein 5 (SCAMP5) cause a variety of neurological disorders including neurodevelopmental delay, epilepsy, and Parkinson's disease. We recently documented the importance of SCAMP2 in the regulation of T-type calcium channel expression in the plasma membrane. Here, we show that similar to SCAMP2, the co-expression of SCAMP5 in tsA-201 cells expressing recombinant Ca3.

View Article and Find Full Text PDF

The dopamine receptor type 1 (D1R) and the dopamine receptor type 5 (D5R), which are often grouped as D1R-like due to their sequence and signaling similarities, exhibit high levels of constitutive activity. The molecular basis for this agonist-independent activation has been well characterized through biochemical and mutagenesis in vitro studies. In this regard, it was reported that many antipsychotic drugs act as inverse agonists of D1R-like constitutive activity.

View Article and Find Full Text PDF

Background And Purpose: Ca 3.1-3 currents differentially contribute to neuronal firing patterns. Ca 3 are regulated by G protein-coupled receptors (GPCRs) activity, but information about Ca 3 as targets of the constitutive activity of GPCRs is scarce.

View Article and Find Full Text PDF

PCR-tips for rapid diagnosis of bacterial pathogens.

Appl Microbiol Biotechnol

September 2022

Departamento de Ciencia y Tecnología, Laboratorio de Materiales Biotecnológicos (LaMaBio), Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.

Micropipette tips are currently among the most used disposable devices in bioresearch and development laboratories. Their main application is the fractionation of solutions. New functionalities have recently been added to this device, widening their applications.

View Article and Find Full Text PDF

Systemic Ghrelin Treatment Induces Rapid, Transient, and Asymmetric Changes in the Metabolic Activity of the Mouse Brain.

Neuroendocrinology

January 2023

Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, Argentina.

Article Synopsis
  • Ghrelin influences various brain functions by affecting specific regions, with its effects studied through positron emission tomography to assess metabolic activity.
  • Systemic administration of ghrelin was found to increase metabolic uptake in certain brain areas at different time intervals, displaying temporary and asymmetrical changes across multiple regions.
  • The findings suggest that ghrelin's effects on the brain are not solely linked to food intake but reveal complex neurobiological mechanisms that don't rely on how accessible ghrelin is to the brain.
View Article and Find Full Text PDF

Background: The activation of the hypothalamic-pituitary-adrenal (HPA) axis is essential for metabolic adaptation in response to fasting. However, the neurocircuitry connecting changes in the peripheral energy stores to the activity of hypothalamic paraventricular corticotrophin-releasing factor (CRF) neurons, the master controller of the HPA axis activity, is not completely understood. Our main goal was to determine if hypothalamic arcuate nucleus (ARC) POMC and AgRP neurons can communicate fasting-induced changes in peripheral energy stores, associated to a fall in plasma leptin levels, to CRF neurons to modulate the HPA axis activity in mice.

View Article and Find Full Text PDF

The controversial role of the vagus nerve in mediating ghrelin's actions: gut feelings and beyond.

IBRO Neurosci Rep

June 2022

Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina.

Ghrelin is a stomach-derived peptide hormone that acts via the growth hormone secretagogue receptor (GHSR) and displays a plethora of neuroendocrine, metabolic, autonomic and behavioral actions. It has been proposed that some actions of ghrelin are exerted via the vagus nerve, which provides a bidirectional communication between the central nervous system and peripheral systems. The vagus nerve comprises sensory fibers, which originate from neurons of the nodose and jugular ganglia, and motor fibers, which originate from neurons of the medulla.

View Article and Find Full Text PDF

The growth hormone secretagogue receptor (GHSR) is a G protein-coupled receptor that regulates essential physiological functions. In particular, activation of GHSR in response to its endogenous agonist ghrelin promotes food intake and blood glucose increase. Therefore, compounds aimed at blocking GHSR signaling constitute potential options against obesity-related metabolic disorders.

View Article and Find Full Text PDF

GHSR controls food deprivation-induced activation of CRF neurons of the hypothalamic paraventricular nucleus in a LEAP2-dependent manner.

Cell Mol Life Sci

May 2022

Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina.

Objective: Prolonged fasting is a major challenge for living organisms. An appropriate metabolic response to food deprivation requires the activation of the corticotropin-releasing factor-producing neurons of the hypothalamic paraventricular nucleus (PVH neurons), which are a part of the hypothalamic-pituitary-adrenal axis (HPA), as well as the growth hormone secretagogue receptor (GHSR) signaling, whose activity is up- or down-regulated, respectively, by the hormones ghrelin and the liver-expressed antimicrobial peptide 2 (LEAP2). Since ghrelin treatment potently up-regulates the HPA axis, we studied the role of GHSR in mediating food deprivation-induced activation of the PVH neurons in mice.

View Article and Find Full Text PDF

Growth hormone secretagogue receptor signaling in the supramammillary nucleus targets nitric oxide-producing neurons and controls recognition memory in mice.

Psychoneuroendocrinology

May 2022

Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina; Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden. Electronic address:

Article Synopsis
  • * The study used a specific mouse model (GHSR-eGFP) to show that ghrelin reaches the SuM and affects certain brain cells, particularly under conditions like calorie restriction or binge eating.
  • * While ghrelin injection in the SuM didn't change food intake or other behaviors immediately, it did enhance recognition memory, highlighting the role of SuM neurons in ghrelin's effects on behavior.
View Article and Find Full Text PDF

Using preproghrelin-deficient mice (), we previously observed that preproghrelin modulates pulsatile growth hormone (GH) secretion in post-pubertal male mice. However, the role of ghrelin and its derived peptides in the regulation of growth parameters or feeding in females is unknown. We measured pulsatile GH secretion, growth, metabolic parameters and feeding behavior in adult and male and female mice.

View Article and Find Full Text PDF

Ghrelin treatment induces rapid and delayed increments of food intake: a heuristic model to explain ghrelin's orexigenic effects.

Cell Mol Life Sci

October 2021

Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, IMBICE, Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP), Calle 526 S/N entre 10 y 11, PO Box 403, 1900, La Plata, Buenos Aires, Argentina.

Ghrelin is a stomach-derived peptide hormone with salient roles in the regulation of energy balance and metabolism. Notably, ghrelin is recognized as the most powerful known circulating orexigenic hormone. Here, we systematically investigated the effects of ghrelin on energy homeostasis and found that ghrelin primarily induces a biphasic effect on food intake that has indirect consequences on energy expenditure and nutrient partitioning.

View Article and Find Full Text PDF

Ghrelin is a peptide hormone mainly secreted from gastrointestinal tract that acts via the growth hormone secretagogue receptor (GHSR), which is highly expressed in the brain. Strikingly, the accessibility of ghrelin to the brain seems to be limited and restricted to few brain areas. Previous studies in mice have shown that ghrelin can access the brain via the blood-cerebrospinal fluid (CSF) barrier, an interface constituted by the choroid plexus and the hypothalamic tanycytes.

View Article and Find Full Text PDF

LEAP2 Impairs the Capability of the Growth Hormone Secretagogue Receptor to Regulate the Dopamine 2 Receptor Signaling.

Front Pharmacol

August 2021

Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], La Plata, Argentina.

The growth hormone secretagogue receptor (GHSR) signals in response to ghrelin, but also acts via ligand-independent mechanisms that include either constitutive activation or interaction with other G protein-coupled receptors, such as the dopamine 2 receptor (D2R). A key target of GHSR in neurons is voltage-gated calcium channels type 2.2 (Ca2.

View Article and Find Full Text PDF

Ghrelin-induced Food Intake, but not GH Secretion, Requires the Expression of the GH Receptor in the Brain of Male Mice.

Endocrinology

July 2021

Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, 05508-000, Brazil.

Ghrelin stimulates both GH secretion and food intake. The orexigenic action of ghrelin is mainly mediated by neurons that coexpress agouti-related protein (AgRP) and neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH). GH also stimulates food intake and, importantly, ARHAgRP/NPY neurons express GH receptor (GHR).

View Article and Find Full Text PDF

The ups and downs of growth hormone secretagogue receptor signaling.

FEBS J

December 2021

Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina.

The growth hormone secretagogue receptor (GHSR) has emerged as one of the most fascinating molecules from the perspective of neuroendocrine control. GHSR is mainly expressed in the pituitary and the brain, and plays key roles regulating not only growth hormone secretion but also food intake, adiposity, body weight, glucose homeostasis and other complex functions. Quite atypically, GHSR signaling displays a basal constitutive activity that can be up- or downregulated by two digestive system-derived hormones: the octanoylated-peptide ghrelin and the liver-expressed antimicrobial peptide 2 (LEAP2), which was recently recognized as an endogenous GHSR ligand.

View Article and Find Full Text PDF