753 results match your criteria: "Moscow Engineering Physics Institute[Affiliation]"

We present the precision measurements of 11 years of daily cosmic electron fluxes in the rigidity interval from 1.00 to 41.9 GV based on 2.

View Article and Find Full Text PDF

Despite the wide variety of available cationic lipid platforms for the delivery of nucleic acids into cells, the optimization of their composition has not lost its relevance. The purpose of this work was to develop multi-component cationic lipid nanoparticles (LNPs) with or without a hydrophobic core from natural lipids in order to evaluate the efficiency of LNPs with the widely used cationic lipoid DOTAP (1,2-dioleoyloxy-3-[trimethylammonium]-propane) and the previously unstudied oleoylcholine (Ol-Ch), as well as the ability of LNPs containing GM3 gangliosides to transfect cells with mRNA and siRNA. LNPs containing cationic lipids, phospholipids and cholesterol, and surfactants were prepared according to a three-stage procedure.

View Article and Find Full Text PDF

The therapeutic potential of short interfering RNA (siRNA) to treat many diseases that are incurable with traditional preparations is limited by the extensive metabolism of serum nucleases, low permeability through biological membrane barriers because of a negative charge, and endosomal trapping. Effective delivery vectors are required to overcome these challenges without causing unwanted side effects. Here, we present a relatively simple synthetic protocol to obtain positively charged gold nanoparticles (AuNPs) with narrow size distribution and the surface modified with Tat-related cell-penetrating peptide.

View Article and Find Full Text PDF

MOSFE-Capacitor Silicon Carbide-Based Hydrogen Gas Sensors.

Sensors (Basel)

April 2023

Engineering Center of Microtechnology and Diagnostics, St. Petersburg Electrotechnical University (ETU «LETI»), Professora Popova str. 5, 197022 St. Petersburg, Russia.

The features of the wide band gap SiC semiconductor use in the capacitive MOSFE sensors' structure in terms of the hydrogen gas sensitivity effect, the response speed, and the measuring signals' optimal parameters are studied. Sensors in a high-temperature ceramic housing with the Me/TaO/SiC/4H-SiC structures and two types of gas-sensitive electrodes were made: Palladium and Platinum. The effectiveness of using Platinum as an alternative to Palladium in the MOSFE-Capacitor (MOSFEC) gas sensors' high-temperature design is evaluated.

View Article and Find Full Text PDF

The influence of structure and technological parameters (STPs) on the metrological characteristics of hydrogen sensors based on MISFETs has been investigated. Compact electrophysical and electrical models connecting the drain current, the voltage between the drain and the source and the voltage between the gate and the substrate with the technological parameters of the -channel MISFET as a sensitive element of the hydrogen sensor are proposed in a general form. Unlike the majority of works, in which the hydrogen sensitivity of only the threshold voltage of the MISFET is investigated, the proposed models allow us to simulate the hydrogen sensitivity of gate voltages or drain currents in weak and strong inversion modes, taking into account changes in the MIS structure charges.

View Article and Find Full Text PDF

Multiplexed fluorescent immunohistochemical analysis of breast cancer (BC) markers and high-resolution 3D immunofluorescence imaging of the tumor and its microenvironment not only facilitate making the disease prognosis and selecting effective anticancer therapy (including photodynamic therapy), but also provides information on signaling and metabolic mechanisms of carcinogenesis and helps in the search for new therapeutic targets and drugs. The characteristics of imaging nanoprobe efficiency, such as sensitivity, target affinity, depth of tissue penetration, and photostability, are determined by the properties of their components, fluorophores and capture molecules, and by the method of their conjugation. Regarding individual nanoprobe components, fluorescent nanocrystals (NCs) are widely used for optical imaging in vitro and in vivo, and single-domain antibodies (sdAbs) are well established as highly specific capture molecules in diagnostic and therapeutic applications.

View Article and Find Full Text PDF

A novel laser-based method for producing nanocomposite coatings consisting of a tungsten sulfoselenide (WSeS) matrix and W nanoparticles (NP-W) was developed. Pulsed laser ablation of WSe was carried out in HS gas under appropriate laser fluence and reactive gas pressure. It was found that moderate sulfur doping (S/Se ~0.

View Article and Find Full Text PDF

Label-Free Multiplexed Microfluidic Analysis of Protein Interactions Based on Photonic Crystal Surface Mode Imaging.

Int J Mol Sci

February 2023

Laboratoire de Recherche en Nanosciences, LRN-EA4682, Structure Fédérative de Recherche Cap Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51100 Reims, France.

High-throughput protein assays are crucial for modern diagnostics, drug discovery, proteomics, and other fields of biology and medicine. It allows simultaneous detection of hundreds of analytes and miniaturization of both fabrication and analytical procedures. Photonic crystal surface mode (PC SM) imaging is an effective alternative to surface plasmon resonance (SPR) imaging used in conventional gold-coated, label-free biosensors.

View Article and Find Full Text PDF

Theoretical analysis of electrochromism of Ni-deficient nickel oxide - from bulk to surfaces.

Phys Chem Chem Phys

March 2023

Department of Materials Science and Engineering, School of Industrial Engineering and Management, KTH - Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden.

Article Synopsis
  • The study focuses on new electrochromic materials, particularly nickel oxide (NiO), which play a crucial role in enhancing energy efficiency, such as in smart windows.
  • Using DFT+ calculations, the research reveals that nickel vacancies in NiO lead to the formation of localized hole polarons, which change the material's optical properties during electrochromic transitions.
  • The findings suggest a novel mechanism of electrochromism in Ni-deficient NiO, driven by hole polarons in oxygen p-states rather than changes in nickel oxidation states.
View Article and Find Full Text PDF

Fast reconstruction of holographic and diffractive optical elements (DOE) can be implemented by binary digital micromirror devices (DMD). Since micromirrors of the DMD have two positions, the synthesized DOEs must be binary. This work studies the possibility of improving the method of synthesis of amplitude binary inline Fresnel holograms in divergent beams.

View Article and Find Full Text PDF

The COHERENT Collaboration searched for scalar dark matter particles produced at the Spallation Neutron Source with masses between 1 and 220  MeV/c^{2} using a CsI[Na] scintillation detector sensitive to nuclear recoils above 9  keV_{nr}. No evidence for dark matter is found and we thus place limits on allowed parameter space. With this low-threshold detector, we are sensitive to coherent elastic scattering between dark matter and nuclei.

View Article and Find Full Text PDF

Unlabelled: Dental diseases occur in children with cerebral palsy three times higher than in healthy children. Low values of the unstimulated salivation rate (<0.3 ml per minute), pH and buffer capacity, changes in enzyme activity and sialic acid concentration, as well as increased saliva osmolarity and total protein concentration, which indicates impaired hydration, are the factors in the development of a gingiva disease in case of cerebral palsy.

View Article and Find Full Text PDF

This paper introduces the results of hydrolytic stability tests and radiation resistance tests of phosphate molybdates and phosphate tungstates NaZr(PO)(XO), X = Mo, W (0 ≤ x ≤ 0.5). The ceramics characterized by relatively high density (more than 97.

View Article and Find Full Text PDF

Assessment of core-shell nanoparticles surface structure heterogeneity by SAXS contrast variation and ab initio modeling.

Colloids Surf B Biointerfaces

April 2023

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; National Research Nuclear University Moscow Engineering Physics Institute, Moscow 115409, Russia. Electronic address:

For the biomedical applications of nanoparticles, the study of their structure is a major step towards understanding the mechanisms of their interaction with biological environment. Detailed structural analysis of particles' surface is vital for rational design of drug delivery systems. In particular, for core-shell or surface-modified nanoparticles surface structure can be described in terms of shell coating uniformity and shell thickness uniformity around the nanoparticle core.

View Article and Find Full Text PDF

Magnetic force and gravity are two fundamental forces affecting all living organisms, including bacteria. On Earth, experimentally created magnetic force can be used to counterbalance gravity and place living organisms in conditions of magnetic levitation. Under conditions of microgravity, magnetic force becomes the only force that moves bacteria, providing an acceleration towards areas of the lowest magnetic field and locking cells in this area.

View Article and Find Full Text PDF

The so-called "hydrophobic gating" is widely discussed as a putative mechanism to control water and ion conduction via ion channels. This effect can occur in narrow areas of the channels pore lined by non-polar residues. In the closed state of the channel, such regions may spontaneously transit to a dehydrated state to block water and ions transport without full pore occlusion.

View Article and Find Full Text PDF

The multi-target path planning problem is a universal problem to mobile robots and mobile manipulators. The two movement modes of forward movement and rotation are universally implemented in integrated, commercially accessible mobile platforms used in logistics robots, construction robots, etc. Localization error in multi-target path tracking is one of the crucial measures in mobile robot applications.

View Article and Find Full Text PDF

The technological approach for the low-scale production of field-effect gas sensors as electronic components for use in non-lab ambient environments is described. In this work, in addition to the mechanical protection of a gas-sensitive structure, an emphasis was also placed on the very topical issue of thermal stabilization around the one temperature point, even if it is several degrees higher than the surrounding one, which will probably also be useful for any type of application for many types of field-effect sensors. Considerable attention was paid to the characterization of the results obtained by various invasive and non-invasive methods for diagnosing the manufactured construction.

View Article and Find Full Text PDF

The development and production of thin-film coatings having very low friction is an urgent problem of materials science. One of the most promising solutions is the fabrication of special nanocomposites containing transition-metal dichalcogenides and various carbon-based nanophases. This study aims to explore the influence of graphite-like carbon (g-C) and Ni interface layers on the tribological properties of thin WS films.

View Article and Find Full Text PDF

We present an improved measurement of the carbon-nitrogen-oxygen (CNO) solar neutrino interaction rate at Earth obtained with the complete Borexino Phase-III dataset. The measured rate, R_{CNO}=6.7_{-0.

View Article and Find Full Text PDF

Glioblastoma is a primary brain tumor and one of the most aggressive malignant neoplasms. The prognosis remains poor with a short survival period after diagnosis even in the case of timely detection and early treatment with the use of advanced chemotherapy, radiation therapy and surgical treatment. In this regard, the research of the main pathogenetic links in the glioblastoma development continues.

View Article and Find Full Text PDF

The most important objective of modern neuroimaging is comparison of data on genotype and phenotype of brain gliomas. Radiogenomics as a new branch of science is devoted to searching for such relationships based on MRI and PET/CT parameters. The 2021 WHO classification of tumors of the central nervous system poses the most important tasks for physicians in assessment of biological behavior of tumors and their response to combined treatment.

View Article and Find Full Text PDF

Magnetic nanoparticles are widely used in biomedicine for MRI imaging and anemia treatment. The aging of these nanomaterials in vivo may lead to gradual diminishing of their contrast properties and inducing toxicity. Here, we describe observation of the full lifecycle of 40-nm magnetic particles from their injection to the complete degradation in vivo and associated impact on the organism.

View Article and Find Full Text PDF

Statistical Analysis of Photoluminescence Decay Kinetics in Quantum Dot Ensembles: Effects of Inorganic Shell Composition and Environment.

J Phys Chem C Nanomater Interfaces

December 2022

Center of Physics-CF-UM-UP, Laboratório de Física para Materiais e Tecnologias Emergentes (LaPMET), University of Minho, 4710-057Braga, Portugal.

Discerning the kinetics of photoluminescence (PL) decay of packed quantum dots (QDs) and QD-based hybrid materials is of crucial importance for achieving their promising potential. However, the interpretation of the decay kinetics of QD-based systems, which usually are not single-exponential, remains challenging. Here, we present a method for analyzing photoluminescence (PL) decay curves of fluorophores by studying their statistical moments.

View Article and Find Full Text PDF

Measurements of the associated production of a W boson and a charm ( ) quark in proton-proton collisions at a centre-of-mass energy of 8 are reported. The analysis uses a data sample corresponding to a total integrated luminosity of 19.7 collected by the CMS detector at the LHC.

View Article and Find Full Text PDF