749 results match your criteria: "Moscow Engineering Physics Institute[Affiliation]"

A novel approach to developing lateral flow assays (LFAs) for the detection of CYFRA 21-1 (cytokeratin 19 fragment, a molecular biomarker for epithelial-origin cancers) is proposed. Magnetic bioconjugates (MBCs) were employed in combination with advanced optical and magnetic tools to optimize assay conditions. The approach integrates such techniques as label-free spectral-phase interferometry, colorimetric detection, and ultrasensitive magnetometry using the magnetic particle quantification (MPQ) technique.

View Article and Find Full Text PDF

Mass-spectrometry-based assays nowadays play an essential role in biomedical research and clinical applications. There are different types of commercial mass spectrometers on the market today, and triple quadrupole (QqQ) is one of the time-honored systems. Here, we overview the main areas of QqQ applications in biomedicine and assess the current level, evolution, and trends in the use of QqQ in these areas.

View Article and Find Full Text PDF

The problem of treating cancer patients with lung cancer has become more difficult due to the SARS-CoV-2 viral infection and concomitant bacterial lesions. The analysis shows that the photodynamic effect of long-wavelength polycationic photosensitizers suppresses the tumor process (including the destruction of cancer stem cells), SARS-CoV-2 coronavirus infection, Gram-positive and Gram-negative bacteria, including those that can cause pneumonia. Therefore, the photodynamic approach using such photosensitizers is promising for the development of an effective treatment method for patients with lung cancer, including those with SARS-CoV-2 infection and bacterial complications.

View Article and Find Full Text PDF

Chiral Dichroism in Resonant Metasurfaces with Monoclinic Lattices.

Phys Rev Lett

November 2024

Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia.

We demonstrate that chiral response can be achieved in resonant metasurfaces with a monoclinic lattice symmetry (the so-called Bravais oblique lattices) where the mirror symmetry is broken by the lattice asymmetry and also by a substrate, whereas each individual meta-atom remains fully achiral. We describe the underlying physics by introducing a mode chirality parameter as a quantitative measure of the lattice chiral eigenmodes. We confirm experimentally selective linear and nonlinear chiral interaction of resonant silicon metasurfaces with circularly polarized light.

View Article and Find Full Text PDF

Different types of photosensitizers (PSs) have different dynamics and intensities of accumulation, depending on the type of tumor or different areas within the same tumor. This determines the effectiveness of fluorescence diagnostics and photodynamic therapy (PDT). This paper studies the processes of 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) and chlorin e6 (Ce6) accumulation in the central and border zones of a tumor after combined administration of two PSs into the patient's body.

View Article and Find Full Text PDF

Quantum Dot-Based Nanosensors for In Vitro Detection of .

Nanomaterials (Basel)

September 2024

Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia.

Article Synopsis
  • * Various diagnostic methods exist to detect TB biomarkers like DNA, proteins, and antibodies using techniques such as PCR, ELISA, and flow cytometry, which help identify infections through optical signals.
  • * Recent advancements in biosensing focus on enhancing detection sensitivity using fluorescent quantum dots, which offer brighter and more stable optical tags for identifying TB biomarkers more effectively.
View Article and Find Full Text PDF

The combination of micro- or nanofluidics and strong light-matter coupling has gained much interest in the past decade, which has led to the development of advanced systems and devices with numerous potential applications in different fields, such as chemistry, biosensing, and material science. Strong light-matter coupling is achieved by placing a dipole (e.g.

View Article and Find Full Text PDF

Pharmacokinetics of nanomedicines can be improved by a temporal blockade of mononuclear phagocyte system (MPS) through the interaction with other biocompatible nanoparticles. Liposomes are excellent candidates as blocking agents, but the efficiency of the MPS blockade can greatly depend on the liposome properties. Here, we investigated the dependence of the efficiency of the induced MPS blockadeandon the size of blocking liposomes in the 100-500 nm range.

View Article and Find Full Text PDF

We consider the operation of a digital linear ion trap with resonance radial ejection and mass selective instability modes. Periodic wave shape has a positive part with amplitude and duration and negative part with amplitude and duration , where is the period. The mapping of the stability diagram, calculations of the well's depth and ion oscillations spectra are presented.

View Article and Find Full Text PDF

In extended solid-state materials, the manipulation of chemical bonds through redox reactions often leads to the emergence of interesting properties, such as unconventional superconductivity, which can be achieved by adjusting the Fermi level through, , intercalation and pressure. Here, we demonstrate that the internal 'biaxial strain' in tri-layered fluorite oxychloride photocatalysts can regulate bond formation and cleavage without redox processes. We achieve this by synthesizing the isovalent solid solution Bi Sb YOCl, which undergoes a structural phase transition from the ideal BiYOCl structure to the SbYOCl structure with (Bi,Sb)O rings.

View Article and Find Full Text PDF

The prevalence of allergic diseases has increased tremendously in recent decades, which can be attributed to growing exposure to environmental triggers, changes in dietary habits, comorbidity, and the increased use of medications. In this context, the multiplexed diagnosis of sensitization to various allergens and the monitoring of the effectiveness of treatments for allergic diseases become particularly urgent issues. The detection of allergen-specific antibodies, in particular, sIgE and sIgG, is a modern alternative to skin tests due to the safety and efficiency of this method.

View Article and Find Full Text PDF

Water electrolysis has become an attractive hydrogen production method. Oxygen evolution reaction (OER) is a bottleneck of water splitting as its four-electron transfer procedure presents sluggish reaction kinetics. Designing composite catalysts with high performance for efficient OER still remains a huge challenge.

View Article and Find Full Text PDF

Polyelectrolyte microparticles (MPs) synthesized on calcium carbonate cores are considered a promising basis for new drug delivery systems. It is known that microparticles entering a physiological environment absorb proteins on their surface, which can change the properties of the microparticles and alter their functional activity. This study aimed to compare the compositions of the adsorbed protein layer formed on microparticles with the core/shell and shell structures obtained by layer-by-layer deposition.

View Article and Find Full Text PDF

Microparticles are versatile carriers for controlled drug delivery in personalized, targeted therapy of various diseases, including cancer. The tumor microenvironment contains different infiltrating cells, including immune cells, which can affect the efficacy of antitumor drugs. Here, prototype microparticle-based systems for the delivery of the antitumor drug doxorubicin (DOX) were developed, and their cytotoxic effects on human epidermoid carcinoma cells and macrophages derived from human leukemia monocytic cells were compared in vitro.

View Article and Find Full Text PDF

Proton therapy can treat tumors located in radiation-sensitive tissues. This article demonstrates the possibility of enhancing the proton therapy with targeted gold nanoparticles that selectively recognize tumor cells. Au-PEG nanoparticles at concentrations above 25 mg/L and 4 Gy proton dose caused complete death of EMT6/P cells in vitro.

View Article and Find Full Text PDF

Nano- and microparticles are increasingly widely used in biomedical research and applications, particularly as specific labels and targeted delivery vehicles. Silica has long been considered the best material for such vehicles, but it has some disadvantages limiting its potential, such as the proneness of silica-based carriers to spontaneous drug release. Calcium carbonate (CaCO) is an emerging alternative, being an easily available, cost-effective, and biocompatible material with high porosity and surface reactivity, which makes it an attractive choice for targeted drug delivery.

View Article and Find Full Text PDF

Our study aimed to clarify the anatomical features of the zygomatic, upper masseteric, lower masseteric and mandibular ligaments and their possible contribution to age-related gravitational ptosis. The study was carried out by the method of layered dissection of fresh cadavers. In several observations, the zygomatic ligament is represented by the fibers originating from the zygomaticus major muscle fibers.

View Article and Find Full Text PDF

The deceleration of a low-density beam of ions in plasma with developed ion-acoustic turbulence arising in strong electric field is described. The time and length of beam deceleration along and across the anisotropy axis of the wave number distribution of ion-acoustic waves are found. It is shown to what extent an increase in the strength of the electric field that generates turbulence is accompanied by a decrease in the time and length of braking.

View Article and Find Full Text PDF

We consider the operation of a digital linear ion trap with resonant radial ejection. A sequence of rectangular voltage pulses with a dipole resonance signal is applied to the trap electrodes. The periodic waveform is piecewise constant, has zero mean, and is determined by an asymmetry parameter : one value is taken on interval and another on , where is the RF period.

View Article and Find Full Text PDF

Modern biomedical research often requires a three-dimensional microscopic analysis of the ultrastructure of biological objects and materials. Conceptual technical and methodological solutions for three-dimensional structure reconstruction are needed to improve the conventional optical, electron, and probe microscopy methods, which to begin with allow one to obtain two-dimensional images and data. This review discusses the principles and potential applications of such techniques as serial section transmission electron microscopy; techniques based on scanning electron microscopy (SEM) (array tomography, focused ion beam SEM, and serial block-face SEM).

View Article and Find Full Text PDF

Electrocatalytic water splitting is a promising route for sustainable hydrogen production. However, the high overpotential of the anodic oxygen evolution reaction poses significant challenge. SrIrO-based perovskite-type catalysts have shown great potential for acidic oxygen evolution reaction, but the origins of their high activity are still unclear.

View Article and Find Full Text PDF

This paper describes events of anomalously high energy transfer to a micro-object by fragments of nuclei generated in nuclear interactions in the environment on board a spacecraft in flight in low-Earth orbit. An algorithm has been developed that allows for the calculation of the absorbed energy from one or more fragments - products of nuclear interaction. With this algorithm the energy distributions for a spherical micro-volume in an aqueous medium were calculated.

View Article and Find Full Text PDF
Article Synopsis
  • Cervical cancer is a significant health issue among young women, prompting the need for better diagnosis and treatment methods, particularly focusing on photodynamic therapy (PDT) using chlorin e6 (Ce6).
  • A clinical study with 94 women evaluated the effectiveness of PDT versus traditional conization treatments, finding that those who received PDT showed greater improvement in cytological outcomes and fewer cervical lesions.
  • Results indicated that patients undergoing PDT had better reproductive outcomes, demonstrating its higher clinical efficacy and safety in treating cervical preinvasive conditions compared to standard surgical treatment.
View Article and Find Full Text PDF

Biodegradable nanomaterials can significantly improve the safety profile of nanomedicine. Germanium nanoparticles (Ge NPs) with a safe biodegradation pathway are developed as efficient photothermal converters for biomedical applications. Ge NPs synthesized by femtosecond-laser ablation in liquids rapidly dissolve in physiological-like environment through the oxidation mechanism.

View Article and Find Full Text PDF

Nanoscale morphological features of branched processes of glial cells may be of decisive importance for neuron-astrocyte interactions in health and disease. The paper presents the results of a correlation analysis of images of thin processes of astrocytes in nervous tissue of the mouse brain, which were obtained by scanning probe microscopy (SPM) and transmission electron microscopy (TEM) with high spatial resolution. Samples were prepared and imaged using a unique hardware combination of ultramicrotomy and SPM.

View Article and Find Full Text PDF