7 results match your criteria: "Monsanto Research Centre[Affiliation]"

Bollgard-II cotton expressing Cry1Ac and Cry2Ab2 insecticidal proteins has been commercially cultivated in India since 2006 to control bollworms. These genes were introgressed into parental germplasm of numerous hybrids. Therefore, it is imperative that these insecticidal proteins are expressed in sufficient quantities in different tissues, throughout the season irrespective of genetic background or environmental conditions for effective performance.

View Article and Find Full Text PDF

Background: Bollgard(®) cotton, expressing Cry1Ac insecticidal protein, was approved for commercial planting in India in 2002, and by 2009 constituted 87% of the Indian crop, reducing losses from lepidopteran pests, including pink bollworm (PBW), Pectinophora gossypiella. Inadequate control of PBW in fields of single-gene Bollgard cotton was reported in 2009; surveys revealed heavy infestations of PBW in Bollgard, restricted to Gujarat state, but not elsewhere in India.

Results: Bioassays of PBW strains from Bollgard bolls showed that, while susceptible PBW could not complete development to third and later instar at 10.

View Article and Find Full Text PDF

Background: The inheritance and phenotypic expression of resistance to Bacillus thuringiensis Cry1Ac insecticidal protein were studied in selected populations of pink bollworm, Pectinophora gossypiella (Saunders), that were collected from Bollgard cotton in India. The individual populations in the pool were Cry1Ac resistant and sourced from Cry1Ac-containing Bt cotton (Bollgard) hybrids in 2010.

Results: Laboratory selection on diet with 1.

View Article and Find Full Text PDF

Background: Among the major pests of maize in India are two stem borers, Chilo partellus (Swinhoe) and Sesamia inferens (Walker), and an earworm, Helicoverpa armigera (Hübner). As a pest control strategy, transgenic Bacillus thuringiensis (Bt) maize hybrids are undergoing regulatory trials in India. We have determined the sensitivity of the target lepidopterans to the insecticidal Bt proteins expressed in Bt maize, as this determines product efficacy and the resistance management strategy to be adopted.

View Article and Find Full Text PDF

The use of particle gun for the production of marker-free plants is scant in published literature. Perhaps this is a reflection of the widely held notion that the events generated through bombardment tend to have multiple copies of transgenes, usually integrated at a single locus, features which precludes segregating away the selectable marker gene. However, our previous studies have shown that single-copy integrants are obtained at a high frequency if limited quantity of DNA is used for bombardment.

View Article and Find Full Text PDF

Effect of promoter driving selectable marker on corn transformation.

Transgenic Res

August 2008

Monsanto Research Centre, #44/2A, Vasanths' Business Park, Bellary Road, NH:7, Hebbal, Bangalore, India.

Identification of an appropriate selection agent and its corresponding selectable marker gene is one of the first steps in establishing a transformation protocol for a given plant species. As the promoter controls expression level of the genes, the promoter driving the selectable marker gene can affect transformation. However, investigations into the direct effect of promoters driving selectable marker on transformation are lacking in the literature though many reports of relative strengths of promoters driving reporter genes like GUS or CAT or GFP are available.

View Article and Find Full Text PDF