1,545 results match your criteria: "Monell Chemical Senses Center; jmainland@monell.org.[Affiliation]"

The sweet taste receptor, TAS1R2-TAS1R3, is expressed in taste bud cells, where it conveys sweetness, and also in intestinal enteroendocrine cells, where it may facilitate glucose absorption and assimilation. In the present study, our objective was to determine whether TAS1R2-TAS1R3 influences glucose metabolism bidirectionally via hyperactivation with 5 mM sucralose (n = 12) and inhibition with 2 mM sodium lactisole (n = 10) in mixture with 75 g glucose loads during oral glucose tolerance tests (OGTTs) in healthy humans. Plasma glucose, insulin, and glucagon were measured before, during, and after OGTTs up to 120 minutes post-prandially.

View Article and Find Full Text PDF

Background: The liking for sweet taste is a powerful driver for consuming added sugars, and therefore, understanding how sweet liking is formed is a critical step in devising strategies to lower added sugars consumption. However, current research on the influence of genetic and environmental factors on sweet liking is mostly based on research conducted with individuals of European ancestry. Whether these results can be generalized to people of other ancestry groups warrants investigation.

View Article and Find Full Text PDF

Introduction: Based on a large body of previous research suggesting that smell loss was a predictor of COVID-19, we investigated the ability of SCENTinel®, a newly validated rapid olfactory test that assesses odor detection, intensity, and identification, to predict SARS-CoV-2 infection in a community sample.

Methods: Between April 5, 2021, and July 5, 2022, 1,979 individuals took one SCENTinel® test, completed at least one physician-ordered SARS-CoV-2 PCR test, and endorsed a list of self-reported symptoms.

Results: Among the of SCENTinel® subtests, the self-rated odor intensity score, especially when dichotomized using a previously established threshold, was the strongest predictor of SARS-CoV-2 infection.

View Article and Find Full Text PDF

Background: Early identification of deficits in our ability to perceive odors is important as many normal (i.e., aging) and pathological (i.

View Article and Find Full Text PDF

Nitric oxide (NO) is involved in a variety of biological functions including blood vessel dilation and neurotransmitter release. In animals, NO has been demonstrated to affect multiple behavioral outcomes, such as memory performance and arousal, whereas this link is less explored in humans. NO is created in the paranasal sinuses and studies show that humming releases paranasal NO to the nasal tract and that NO can then cross the blood brain barrier.

View Article and Find Full Text PDF

For most untrained novices, talking about wine or imagining the smells and flavours of wine is difficult. Wine experts, on the other hand, have been found to have better imagery for wine, and are also more proficient in describing wine. Some scholars have suggested that imagery and language are based on similar underlying processes, but no conclusive evidence has been found regarding mental imagery and language production.

View Article and Find Full Text PDF

Unlabelled: The SARS-CoV-2 pandemic was marked with emerging viral variants, some of which were designated as variants of concern (VOCs) due to selection and rapid circulation in the human population. Here, we elucidate functional features of each VOC linked to variations in replication rate. Patient-derived primary nasal cultures grown at air-liquid interface were used to model upper respiratory infection and compared to cell lines derived from human lung epithelia.

View Article and Find Full Text PDF

Purpose: The bad bitter taste of some medicines is a barrier to overcoming noncompliance with medication use, especially life-saving drugs given to children and the elderly. Here, we evaluated a new class of bitter blockers (thiazolidinediones, TZDs).

Methods: In this study, 2 TZDs were tested, rosiglitazone (ROSI) and a simpler form of TZD, using a high-potency sweetener as a positive control (neohesperidin dihydrochalcone, NHDC).

View Article and Find Full Text PDF

Metabolic state modulates neural processing of odors in the human olfactory bulb.

Biol Psychol

March 2024

Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Monell Chemical Senses Center, Philadelphia, PA, USA. Electronic address:

The olfactory and endocrine systems have recently been shown to reciprocally shape the homeostatic processes of energy intake. As demonstrated in animal models, the individual's metabolic state dynamically modulates how the olfactory bulb process odor stimuli using a range of endocrine signals. Here we aimed to determine whether the neural processing of odors in human olfactory bulb is modulated by metabolic state.

View Article and Find Full Text PDF

Understanding the temporal and spatial brain locations etiological for psychiatric disorders is essential for targeted neurobiological research. Integration of genomic insights from genome-wide association studies with single-cell transcriptomics is a powerful approach although past efforts have necessarily relied on mouse atlases. Leveraging a comprehensive atlas of the adult human brain, we prioritized cell types via the enrichment of SNP-heritabilities for brain diseases, disorders, and traits, progressing from individual cell types to brain regions.

View Article and Find Full Text PDF
Article Synopsis
  • Pancreatic ductal adenocarcinoma (PDA) starts with acinar cells turning into metaplastic duct cells, which are important in the development of cancer.
  • Tuft cells, which emerge during this process, initially help suppress tumor growth but their role during cancer progression is unclear.
  • Research using a special lineage tracing model shows that in advanced PDA, metaplastic tuft cells transform into neural-like progenitor cells, indicating a shift that correlates with worse outcomes for patients.
View Article and Find Full Text PDF

A Trefoil factor 3-Lingo2 axis restrains proliferative expansion of type-1 T helper cells during GI nematode infection.

Mucosal Immunol

April 2024

Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. Electronic address:

Host defense at the mucosal interface requires collaborative interactions between diverse cell lineages. Epithelial cells damaged by microbial invaders release reparative proteins such as the Trefoil factor family (TFF) peptides that functionally restore barrier integrity. However, whether TFF peptides and their receptors also serve instructive roles for immune cell function during infection is incompletely understood.

View Article and Find Full Text PDF

The olfactory neuroepithelium serves as a sensory organ for odors and forms part of the nasal mucosal barrier. Olfactory sensory neurons are surrounded and supported by epithelial cells. Among them, microvillous cells (MVCs) are strategically positioned at the apical surface, but their specific functions are enigmatic, and their relationship to the other specialized epithelial cells is unclear.

View Article and Find Full Text PDF

Cardiovascular homeostasis is maintained, in part, by neural signals arising from arterial baroreceptors that apprise the brain of blood volume and pressure. Here, we test whether neurons within the nodose ganglia that express angiotensin type-1a receptors (referred to as NG) serve as baroreceptors that differentially influence blood pressure (BP) in male and female mice. Using -Cre mice and Cre-dependent AAVs to direct tdTomato to NG, neuroanatomical studies revealed that NG receive input from the aortic arch, project to the caudal nucleus of the solitary tract (NTS), and synthesize mechanosensitive ion channels, To evaluate the functionality of NG, we directed the fluorescent calcium indicator (GCaMP6s) or the light-sensitive channelrhodopsin-2 (ChR2) to -containing neurons.

View Article and Find Full Text PDF

Separate gut-brain circuits for fat and sugar reinforcement combine to promote overeating.

Cell Metab

February 2024

Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA; Monell Chemical Senses Center, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA. Electronic address:

Food is a powerful natural reinforcer that guides feeding decisions. The vagus nerve conveys internal sensory information from the gut to the brain about nutritional value; however, the cellular and molecular basis of macronutrient-specific reward circuits is poorly understood. Here, we monitor in vivo calcium dynamics to provide direct evidence of independent vagal sensing pathways for the detection of dietary fats and sugars.

View Article and Find Full Text PDF

Background: Post-COVID parosmia may be due to dysautonomia and sympathetic hyperresponsiveness, which can be attenuated by stellate ganglion block (SGB). This study evaluates SGB as a treatment for post-COVID olfactory dysfunction (OD).

Methods: Retrospective case series with prospective data of patients with post-COVID OD undergoing unilateral (UL) or bilateral (BL) SGB.

View Article and Find Full Text PDF

Ribonucleotides differentially modulate oral glutamate detection thresholds.

Chem Senses

January 2024

Department of Nutritional Sciences, Rutgers University, 65 Dudley Rd, New Brunswick, NJ 08901, United States.

The savory or umami taste of the amino acid glutamate is synergistically enhanced by the addition of the purines inosine 5'-monophosphate (IMP) and guanosine 5'-monophosphate (GMP) disodium salt. We hypothesized that the addition of purinergic ribonucleotides, along with the pyrimidine ribonucleotides, would decrease the absolute detection threshold of (increase sensitivity to) l-glutamic acid potassium salt (MPG). To test this, we measured both the absolute detection threshold of MPG alone and with a background level (3 mM) of 5 different 5'-ribonucleotides.

View Article and Find Full Text PDF

All respiratory viruses establish primary infections in the nasal epithelium, where efficient innate immune induction may prevent dissemination to the lower airway and thus minimize pathogenesis. Human coronaviruses (HCoVs) cause a range of pathologies, but the host and viral determinants of disease during common cold versus lethal HCoV infections are poorly understood. We model the initial site of infection using primary nasal epithelial cells cultured at air-liquid interface (ALI).

View Article and Find Full Text PDF

An estimated 1 in 10 000 people are born without the ability to smell, a condition known as congenital anosmia, and about one third of those people have non-syndromic, or isolated congenital anosmia (ICA). Despite the significant impact of olfaction for our quality of life, the underlying causes of ICA remain largely unknown. Using whole exome sequencing (WES) in 10 families and 141 individuals with ICA, we identified a candidate list of 162 rare, segregating, deleterious variants in 158 genes.

View Article and Find Full Text PDF

For genotoxic carcinogens, covalent binding to DNA is a critical initiating event in tumorigenesis. The present research investigated dose-effect relationships of three genotoxic carcinogens representing different structural classes, 2-acetylaminofluorene (2-AAF), benzo[a]pyrene (B[a]P) and quinoline (QUI), to assess the existence of no-observed-effect-levels (NOELs) for the formation of DNA adducts. Carcinogens were administered into the air sac of fertilized turkey eggs over wide dose ranges in three daily injections on days 22 to 24 of incubation.

View Article and Find Full Text PDF

Human studies have linked stress exposure to unhealthy eating behavior. However, the mechanisms that drive stress-associated changes in eating behavior remain incompletely understood. The sense of taste plays important roles in food preference and intake.

View Article and Find Full Text PDF

Chemosensory scientists have been skeptical that reports of COVID-19 taste loss are genuine, in part because before COVID-19 taste loss was rare and often confused with smell loss. Therefore, to establish the predicted prevalence rate of taste loss in COVID-19 patients, we conducted a systematic review and meta-analysis of 376 papers published in 2020-2021, with 235 meeting all inclusion criteria. Drawing on previous studies and guided by early meta-analyses, we explored how methodological differences (direct vs.

View Article and Find Full Text PDF

Skin employs interdependent cellular networks to facilitate barrier integrity and host immunity through ill-defined mechanisms. This study demonstrates that manipulation of itch-sensing neurons bearing the Mas-related G protein-coupled receptor A3 (MrgprA3) drives IL-17+ γδ T cell expansion, epidermal thickening, and resistance to the human pathogen through mechanisms that require myeloid antigen presenting cells (APC). Activated MrgprA3 neurons instruct myeloid APCs to downregulate interleukin 33 (IL-33) and up-regulate TNFα partially through the neuropeptide calcitonin gene related peptide (CGRP).

View Article and Find Full Text PDF

Background: The liking for sweet taste is a powerful driver for consuming added sugars, and therefore, understanding how sweet liking is formed is a critical step in devising strategies to lower added sugars consumption. However, current research on the influence of genetic and environmental factors on sweet liking is mostly based on research conducted with individuals of European ancestry. Whether these results can be generalized to people of other ancestry groups warrants investigation.

View Article and Find Full Text PDF

Infection of immature mice with rhinovirus (RV) induces an asthma-like phenotype consisting of type 2 inflammation, mucous metaplasia, eosinophilic inflammation, and airway hyperresponsiveness that is dependent on IL-25 and type 2 innate lymphoid cells (ILC2s). Doublecortin-like kinase 1-positive (DCLK1+) tuft cells are a major source of IL-25. We sought to determine the requirement of tuft cells for the RV-induced asthma phenotype in wild-type mice and mice deficient in Pou2f3, a transcription factor required for tuft cell development.

View Article and Find Full Text PDF