229 results match your criteria: "Molecular and Environmental Toxicology Center[Affiliation]"

A growing body of research has identified circadian-rhythm disruption as a risk factor for metabolic health. However, the underlying biological basis remains complex, and complete molecular mechanisms are unknown. There is emerging evidence from animal and human research to suggest that the expression of core circadian genes, such as circadian locomotor output cycles kaput gene (CLOCK), brain and muscle ARNT-Like 1 gene (BMAL1), period (PER), and cyptochrome (CRY), and the consequent expression of hundreds of circadian output genes are integral to the regulation of cellular metabolism.

View Article and Find Full Text PDF

Dimerization Rules of Mammalian PAS Proteins.

J Mol Biol

February 2024

Molecular and Environmental Toxicology Center, University of Wisconsin at Madison, USA; McArdle Laboratory for Cancer Research. University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA. Electronic address:

The PAS (PER, ARNT, SIM) protein family plays a vital role in mammalian biology and human disease. This analysis arose from an interest in the signaling mechanics by the Ah receptor (AHR) and the Ah receptor nuclear translocator (ARNT). After more than fifty years by studying this and related mammalian sensor systems, describing the role of PAS domains in signal transduction is still challenging.

View Article and Find Full Text PDF

Diet in treatment of autism spectrum disorders.

Front Neurosci

July 2023

Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States.

Altering the diet to treat disease dates to c. 400 BC when starvation was used to reduce seizures in persons with epilepsy. The current diversity of symptomology and mechanisms underlying autism spectrum disorders (ASDs) and a corresponding lack of disorder-specific effective treatments prompts an evaluation of diet as a therapeutic approach to improve symptoms of ASDs.

View Article and Find Full Text PDF

Prostatic inflammation and prostatic fibrosis are associated with lower urinary tract dysfunction in men. Prostatic inflammation arising from a transurethral uropathogenic infection is sufficient to increase prostatic collagen content in male mice. It is not known whether and how the sequence, duration and chronology of prostatic infection influence urinary function, prostatic inflammation and collagen content.

View Article and Find Full Text PDF

Toxicoproteomics of Mono(2-ethylhexyl) phthalate and Perfluorooctanesulfonic Acid in Models of Prostatic Diseases.

Chem Res Toxicol

February 2023

Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.

Benign and malignant prostatic diseases are common, costly, and burdensome; moreover, they share fundamental underlying molecular processes. Several ubiquitous contaminants may perturb these processes, possibly peroxisome proliferator-activated receptor (PPAR) signaling, but the role of environmental exposures─particularly mixtures─in prostatic diseases is undefined. In the present study, nontumorigenic prostate stromal cells and metastatic prostate epithelial cells were exposed to ubiquitous exogenous PPAR ligands under different dosing paradigms, including a mixture, and effects were assessed mass spectrometry-based global proteomics.

View Article and Find Full Text PDF

2,3,7,8-tetrachlorodibenzo-[p]-dioxin (TCDD) is a persistent global pollutant that exhibits a high affinity for the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor. Epidemiological studies have associated AHR agonist exposure with multiple human neuropathologies. Consistent with the human data, research studies using laboratory models have linked pollutant-induced AHR activation to disruptions in learning and memory as well as motor impairments.

View Article and Find Full Text PDF

Proteins, such as the Ah receptor (AHR), hold potential as sensors to detect ligands in environmental and biological samples, and may also serve as tools to regulate biosynthetic and industrial processes. The AHR is also a prototype system for the PAS superfamily that can sense and mediate adaptation to signals as diverse as light, voltage, oxygen and an array of small molecules. The yeast, has proven to be an important model to study the signal transduction of sensors like the AHR because of its ease of use, numerous available strategies for genetic manipulation, and capacity for heterologous expression.

View Article and Find Full Text PDF

Proteins containing PER-ARNT-SIM (PAS) domains are commonly associated with environmental adaptation in a variety of organisms. The PAS domain is found in proteins throughout Archaea, Bacteria, and Eukarya and often binds small-molecules, supports protein-protein interactions, and transduces input signals to mediate an adaptive physiological response. Signaling events mediated by PAS sensors can occur through induced phosphorelays or genomic events that are often dependent upon PAS domain interactions.

View Article and Find Full Text PDF

Glycogen synthase kinase 3 (GSK3) is a proline-directed serine-threonine kinase that is associated with several neurological disorders, including Alzheimer's disease and fragile X syndrome (FXS). We tested the efficacy of a novel GSK3 inhibitor AFC03127, which was developed by Angelini Pharma, in comparison to the metabotropic glutamate receptor 5 inhibitor 2-Methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) and the GSK3 inhibitor SB216763 in and assays in mice, a mouse model useful for the study of FXS. The assay tested susceptibility to audiogenic-induced seizures (AGS) whereas the assays assessed biomarker expression and dendritic spine length and density in cultured primary neurons as a function of drug dose.

View Article and Find Full Text PDF

Benign prostatic hyperplasia/lower urinary tract dysfunction (LUTD) affects nearly all men. Symptoms typically present in the fifth or sixth decade and progressively worsen over the remainder of life. Here, we identify a surprising origin of this disease that traces back to the intrauterine environment of the developing male, challenging paradigms about when this disease process begins.

View Article and Find Full Text PDF

Rodent genetic models of Ah receptor signaling.

Drug Metab Rev

August 2021

Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, USA.

The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that is a member of the PER-ARNT-SIM superfamily of environmental sensors. This receptor has been a molecule of interest for many years in the field of toxicology, as it was originally discovered to mediate the toxic effects of certain environmental pollutants like benzo()pyrene and 2,3,7,8-tetrachlorodibenzo--dioxin. While all animals express this protein, there is naturally occurring variability in receptor size and responsiveness to ligand.

View Article and Find Full Text PDF

Urinary voiding dysfunction in aging men can cause bothersome symptoms and irreparable tissue damage. Underlying mechanisms are not fully known. We previously demonstrated that subcutaneous, slow-release testosterone and estradiol implants (T+E2) drive a pattern of urinary voiding dysfunction in male mice that resembles that of aging men.

View Article and Find Full Text PDF

Environmental routes of transmission contribute to the spread of the prion diseases chronic wasting disease of deer and elk and scrapie of sheep and goats. Prions can persist in soils and other environmental matrices and remain infectious for years. Prions bind avidly to the common soil mineral montmorillonite, and such binding can dramatically increase oral disease transmission.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) has endogenous functions in mammalian vascular development and is necessary for mediating the toxic effects of a number of environmental contaminants. Studies in mice have demonstrated that AHR is necessary for the formation of the renal, retinal, and hepatic vasculature. In fish, exposure to the prototypic AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces expression of the AHR biomarker cyp1a throughout the developing vasculature and produces vascular malformations in the head and heart.

View Article and Find Full Text PDF

Paracrine signaling in the tissue microenvironment is a central mediator of morphogenesis, and modeling this dynamic intercellular activity is critical to understanding normal and abnormal development. For example, Sonic Hedgehog (Shh) signaling is a conserved mechanism involved in multiple developmental processes and strongly linked to human birth defects including orofacial clefts of the lip and palate. SHH ligand produced, processed, and secreted from the epithelial ectoderm is shuttled through the extracellular matrix where it binds mesenchymal receptors, establishing a gradient of transcriptional response that drives orofacial morphogenesis.

View Article and Find Full Text PDF

Male lower urinary tract symptoms (LUTS) comprise a common syndrome of aging that negatively impacts quality of life. The etiology of LUTS is multifactorial, involving benign prostatic hyperplasia, smooth muscle and neurologic dysfunction, inflammation, sexually transmitted infections, fibrosis, and potentially dysbiosis, but this aspect remains poorly explored. We investigated whether the presence of infectious agents in urine might be associated with LUTS by combining next-generation DNA sequencing for virus discovery, microbiome analysis for characterization of bacterial communities, and mass spectrometry-based metabolomics.

View Article and Find Full Text PDF

Desiccation tolerant (DT) plants engage and disengage sustained forms of energy dissipation in response to desiccation and rehydration. This project sought to characterize the role of zeaxanthin and thylakoid protein phosphorylation status in sustained energy dissipation during desiccation in bryophytes with varying DT. Tolerant (Polytrichum piliferum, Dicranum species, Calliergon stramineum) and sensitive (Grimmia species, Schistidium rivulare, Sphagnum species) moss were desiccated in darkness or natural light conditions for up to three weeks.

View Article and Find Full Text PDF

Bacterial infection is one known etiology of prostatic inflammation. Prostatic inflammation is associated with prostatic collagen accumulation and both are linked to progressive lower urinary tract symptoms in men. We characterized a model of prostatic inflammation using transurethral instillations of UTI89 in C57BL/6J male mice with the goal of determining the optimal instillation conditions, understanding the impact of instillation conditions on urinary physiology, and identifying ideal prostatic lobes and collagen 1a1 prostatic cell types for further analysis.

View Article and Find Full Text PDF

Sonic hedgehog (Shh) pathway disruption causes craniofacial malformations including orofacial clefts (OFCs) of the lip and palate. In normal craniofacial morphogenesis, Shh signals to multipotent cranial neural crest cells (cNCCs) and was recently discovered to regulate the angiogenic transcriptome, including expression markers of perivascular cells and pericytes. The mural cells of microvasculature, pericytes in the brain and face differentiate from cNCCs, but their role in facial development is not known.

View Article and Find Full Text PDF

Identifying environmental risk factors and gene-environment interactions in holoprosencephaly.

Birth Defects Res

January 2021

Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA.

Background: Holoprosencephaly is the most common malformation of the forebrain (1 in 250 embryos) with severe consequences for fetal and child development. This study evaluates nongenetic factors associated with holoprosencephaly risk, severity, and gene-environment interactions.

Methods: For this retrospective case control study, we developed an online questionnaire focusing on exposures to common and rare toxins/toxicants before and during pregnancy, nutritional factors, maternal health history, and demographic factors.

View Article and Find Full Text PDF

Background: The identity and spatial distribution of prostatic cell types has been determined in humans but not in dogs, even though aging- and prostate-related voiding disorders are common in both species and mechanistic factors, such as prostatic collagen accumulation, appear to be shared between species. In this publication we characterize the regional distribution of prostatic cell types in the young intact dog to enable comparisons with human and mice and we examine how the cellular source of procollagen 1A1 changes with age in intact male dogs.

Methods: A multichotomous decision tree involving sequential immunohistochemical stains was validated for use in dog and used to identify specific prostatic cell types and determine their distribution in the capsule, peripheral, periurethral and urethral regions of the young intact canine prostate.

View Article and Find Full Text PDF

Gene-environment interactions: aligning birth defects research with complex etiology.

Development

July 2020

Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA

Developmental biologists rely on genetics-based approaches to understand the origins of congenital abnormalities. Recent advancements in genomics have made it easier than ever to investigate the relationship between genes and disease. However, nonsyndromic birth defects often exhibit non-Mendelian inheritance, incomplete penetrance or variable expressivity.

View Article and Find Full Text PDF

Cytochrome P4501B1 in bone marrow is co-expressed with key markers of mesenchymal stem cells. BMS2 cell line models PAH disruption of bone marrow niche development functions.

Toxicol Appl Pharmacol

August 2020

Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, United States of America; Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705, United States of America; Endocrinology and Reproductive Physiology Program, University of Wisconsin, Madison, WI 53705, United States of America. Electronic address:

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants that are metabolized to carcinogenic dihydrodiol epoxides (PAHDE) by cytochrome P450 1B1 (CYP1B1). This metabolism occurs in bone marrow (BM) mesenchymal stem cells (MSC), which sustain hematopoietic stem and progenitor cells (HSPC). In BM, CYP1B1-mediated metabolism of 7, 12-dimethylbenz[a]anthracene (DMBA) suppresses HSPC colony formation within 6 h, whereas benzo(a)pyrene (BP) generates protective cytokines.

View Article and Find Full Text PDF

Background: Pesticide exposure during susceptible windows and at certain doses are linked to numerous birth defects. Early experimental evidence suggests an association between active ingredients in pesticides and holoprosencephaly (HPE), the most common malformation of the forebrain in humans (1 in 250 embryos). No human studies to date have examined the association.

View Article and Find Full Text PDF

Background: Male lower urinary tract symptoms (LUTS) occur in more than half of men above 50 years of age. LUTS were traditionally attributed to benign prostatic hyperplasia (BPH) and therefore the clinical terminology often uses LUTS and BPH interchangeably. More recently, LUTS were also linked to fibrogenic and inflammatory processes.

View Article and Find Full Text PDF