6,128 results match your criteria: "Molecular Cancer Research and Cancer Genomics Netherlands; University Medical Center Utrecht; Utrecht[Affiliation]"

Molecular and spatial analysis of tertiary lymphoid structures in Sjogren's syndrome.

Nat Commun

January 2025

Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK.

Tertiary lymphoid structures play important roles in autoimmune and non-autoimmune conditions. While many of the molecular mechanisms involved in tertiary lymphoid structure formation have been identified, the cellular sources and temporal and spatial relationship remain unknown. Here we use combine single-cell RNA-sequencing, spatial transcriptomics and proteomics of minor salivary glands of patients with Sjogren's disease and Sicca Syndrome, with ex-vivo functional studies to construct a cellular and spatial map of key components involved in the formation and function of tertiary lymphoid structures.

View Article and Find Full Text PDF

Phenomics-Based Discovery of Novel Orthosteric Choline Kinase Inhibitors.

Angew Chem Int Ed Engl

December 2024

Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.

Article Synopsis
  • CHKA is a key player in cell metabolism and is linked to cancer and immune function, but developing effective inhibitors has been challenging.
  • Researchers discovered that CHKA is an off-target for specific inhibitors, which helps clarify previous inconsistencies in related studies.
  • Modulating CHKA affects immune responses, particularly B-cell maturation and IgG secretion, indicating its significant role in immune signaling.
View Article and Find Full Text PDF

Deciphering the role of the MALT1-RC3H1 axis in regulating GPX4 protein stability.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.

Ferroptosis, a unique form of iron-dependent cell death triggered by lipid peroxidation accumulation, holds great promise for cancer therapy. Despite the crucial role of GPX4 in regulating ferroptosis, our understanding of GPX4 protein regulation remains limited. Through FACS-based genome-wide CRISPR screening, we identified MALT1 as a regulator of GPX4 protein.

View Article and Find Full Text PDF

Background: The 313-variant polygenic risk score (PRS) provides a promising tool for clinical breast cancer risk prediction. However, evaluation of the PRS across different European populations which could influence risk estimation has not been performed.

Methods: We explored the distribution of PRS across European populations using genotype data from 94,072 females without breast cancer diagnosis, of European-ancestry from 21 countries participating in the Breast Cancer Association Consortium (BCAC) and 223,316 females without breast cancer diagnosis from the UK Biobank.

View Article and Find Full Text PDF

 - a large-scale dataset of 3D medical shapes for computer vision.

Biomed Tech (Berl)

December 2024

Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen (AöR), Essen, Germany.

Objectives: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models).

View Article and Find Full Text PDF

Evaluating MicroRNAs as diagnostic tools for lymph node metastasis in breast cancer: Findings from a systematic review and meta-analysis.

Crit Rev Oncol Hematol

December 2024

GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and Cancer Interception Group, PTS Granada, Avenida de la Ilustración 114, Granada 18016, Spain; Biomedical Research Institute IBS-Granada, Avda. de Madrid, 15, Granada 18012, Spain; Unidad de Patología Mamaria, Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario San Cecilio, Granada, Spain; Integral Oncology Division, Virgen de las Nieves University Hospital, Av. Dr. Olóriz 16, Granada 18012, Spain; Molecular Pathology Lab. Pathological Anatomy Unit,  University Hospital Virgen de las Nieves, Granada 18016, Spain. Electronic address:

Lymph node metastasis (LNM) significantly affects the prognosis and clinical management of breast cancer (BC) patients. This systematic review and meta-analysis aim to identify microRNAs (miRNAs) associated with LNM in BC and evaluate their potential diagnostic and prognostic value. Following PRISMA guidelines, a comprehensive literature search was conducted in PubMed, Web of Science, and SCOPUS databases, to assess the role of miRNAs in LNM BC.

View Article and Find Full Text PDF

Xeroderma pigmentosum group C (XPC) is a versatile protein crucial for sensing DNA damage in the global genome nucleotide excision repair (GG-NER) pathway. This pathway is vital for mammalian cells, acting as their essential approach for repairing DNA lesions stemming from interactions with environmental factors, such as exposure to ultraviolet (UV) radiation from the sun. Loss-of-function mutations in the XPC gene confer a photosensitive phenotype in XP-C patients, resulting in the accumulation of unrepaired UV-induced DNA damage.

View Article and Find Full Text PDF

Background: The utilization of PD1 and CTLA4 inhibitors has revolutionized the treatment of malignant melanoma (MM). However, resistance to targeted and immune-checkpoint-based therapies still poses a significant problem.

Objective: Here, we mine large-scale MM proteogenomic data to identify druggable targets and forecast treatment efficacy and resistance.

View Article and Find Full Text PDF

Author Correction: π-HuB: the proteomic navigator of the human body.

Nature

January 2025

State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.

View Article and Find Full Text PDF

TNIK: A redox sensor in endothelial cell permeability.

Sci Adv

December 2024

School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK.

Dysregulation of endothelial barrier integrity can lead to vascular leak and potentially fatal oedema. TNF-α controls endothelial permeability during inflammation and requires the actin organizing Ezrin-Radixin-Moesin (ERM) proteins. We identified TRAF2 and NCK-interacting kinase (TNIK) as a kinase directly phosphorylating and activating ERM, specifically at the plasma membrane of primary human endothelial cells.

View Article and Find Full Text PDF

We profiled a large heterogenous cohort of matched diagnostic-relapse tumour tissue and paired plasma-derived cell free DNA (cfDNA) from patients with relapsed and progressive solid tumours of childhood. Tissue and cfDNA sequencing results were concordant, with a wider spectrum of mutant alleles and higher degree of intra-tumour heterogeneity captured by the latter, if sufficient circulating tumour-derived DNA (ctDNA) was present. Serial tumour sequencing identified putative drivers of relapse, with alterations in epigenetic drivers being a common feature.

View Article and Find Full Text PDF

Background: Over the past decade, PD-1-based immune checkpoint inhibitors (ICI) and targeted therapies (TT) with BRAF and MEK inhibitors transformed melanoma treatment. Both are widely used in the adjuvant setting. However, for patients with a BRAF V600 mutation, the optimal adjuvant therapy remains unclear due to the lack of head-to-head comparison studies.

View Article and Find Full Text PDF

Genome-modified Caenorhabditis elegans expressing the human cytochrome P450 (CYP1A1 and CYP1A2) pathway: An experimental model for environmental carcinogenesis and pharmacological research.

Environ Int

December 2024

Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK. Electronic address:

Article Synopsis
  • Polycyclic aromatic hydrocarbons (PAHs), like benzo[a]pyrene (BaP), arise from incomplete combustion and are found in sources like tobacco smoke and charbroiled food, posing cancer risks.
  • Researchers genetically modified the nematode Caenorhabditis elegans to include human CYP1A1, CYP1A2, and epoxide hydrolase to study the effects of BaP exposure, observing changes in behavior and reproductive performance, such as increased pharyngeal pumping and decreased brood size.
  • The findings revealed that the humanized worms experienced more severe reproductive toxicity and genetic mutations when exposed to BaP, highlighting the potential of these modified organisms for improving research practices while working towards the
View Article and Find Full Text PDF

Purpose: Although chromosome 21 is the smallest human chromosome, it is highly relevant in the pathogenicity of both cancer and congenital diseases, including Alzheimer disease and trisomy 21 (Down syndrome). In addition, cases with rare structural variants (SVs) of chromosome 21 have been reported. These events vary in size and include large chromosomal events, such as ring chromosomes and small partial aneuploidies.

View Article and Find Full Text PDF

π-HuB: the proteomic navigator of the human body.

Nature

December 2024

State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.

The human body contains trillions of cells, classified into specific cell types, with diverse morphologies and functions. In addition, cells of the same type can assume different states within an individual's body during their lifetime. Understanding the complexities of the proteome in the context of a human organism and its many potential states is a necessary requirement to understanding human biology, but these complexities can neither be predicted from the genome, nor have they been systematically measurable with available technologies.

View Article and Find Full Text PDF
Article Synopsis
  • - A survey of aging researchers revealed significant disagreement on key questions about aging, such as its definition, causes, onset, and rejuvenation, indicating a lack of consensus in the field.
  • - Researchers have varying interpretations of what constitutes "aging," leading to different experimental approaches and priorities, which complicates the understanding and study of the aging process.
  • - The findings highlight the necessity for clearer definitions and targeted goals within aging research, as well as strategies to address ongoing disagreements, in hopes of advancing the field.
View Article and Find Full Text PDF

Heterogeneity-driven phenotypic plasticity and treatment response in branched-organoid models of pancreatic ductal adenocarcinoma.

Nat Biomed Eng

December 2024

Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany.

In patients with pancreatic ductal adenocarcinoma (PDAC), intratumoural and intertumoural heterogeneity increases chemoresistance and mortality rates. However, such morphological and phenotypic diversities are not typically captured by organoid models of PDAC. Here we show that branched organoids embedded in collagen gels can recapitulate the phenotypic landscape seen in murine and human PDAC, that the pronounced molecular and morphological intratumoural and intertumoural heterogeneity of organoids is governed by defined transcriptional programmes (notably, epithelial-to-mesenchymal plasticity), and that different organoid phenotypes represent distinct tumour-cell states with unique biological features in vivo.

View Article and Find Full Text PDF

Specialized or secondary metabolites are small molecules of biological origin, often showing potent biological activities with applications in agriculture, engineering and medicine. Usually, the biosynthesis of these natural products is governed by sets of co-regulated and physically clustered genes known as biosynthetic gene clusters (BGCs). To share information about BGCs in a standardized and machine-readable way, the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard and repository was initiated in 2015.

View Article and Find Full Text PDF

Partitioned polygenic risk scores identify distinct types of metabolic dysfunction-associated steatotic liver disease.

Nat Med

December 2024

Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by an excess of lipids, mainly triglycerides, in the liver and components of the metabolic syndrome, which can lead to cirrhosis and liver cancer. While there is solid epidemiological evidence that MASLD clusters with cardiometabolic disease, several leading genetic risk factors for MASLD do not increase the risk of cardiovascular disease, suggesting no causal relationship between MASLD and cardiometabolic derangement. In this work, we leveraged measurements of visceral adiposity identifying 27 previously unknown genetic loci associated with MASLD (n = 36,394), six replicated in four independent cohorts (n = 3,903).

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the importance of forecasting future health issues in the USA for effective planning and public awareness regarding disease and injury burdens.
  • It describes the methodology for predicting life expectancy, cause-specific mortality, and disability-adjusted life-years (DALYs) from 2022 to 2050 using the Global Burden of Diseases framework.
  • The forecasting includes various scenarios to assess the potential impacts of health risks and improvements across the country, focusing on demographic trends and health-related risk factors.
View Article and Find Full Text PDF

Novel loci and biomedical consequences of iron homoeostasis variation.

Commun Biol

December 2024

BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.

Iron homoeostasis is tightly regulated, with hepcidin and soluble transferrin receptor (sTfR) playing significant roles. However, the genetic determinants of these traits and the biomedical consequences of iron homoeostasis variation are unclear. In a meta-analysis of 12 cohorts involving 91,675 participants, we found 43 genomic loci associated with either hepcidin or sTfR concentration, of which 15 previously unreported.

View Article and Find Full Text PDF

A missense variant effect map for the human tumor-suppressor protein CHK2.

Am J Hum Genet

December 2024

The Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. Electronic address:

The tumor suppressor CHEK2 encodes the serine/threonine protein kinase CHK2 which, upon DNA damage, is important for pausing the cell cycle, initiating DNA repair, and inducing apoptosis. CHK2 phosphorylation of the tumor suppressor BRCA1 is also important for mitotic spindle assembly and chromosomal stability. Consistent with its cell-cycle checkpoint role, both germline and somatic variants in CHEK2 have been linked to breast and other cancers.

View Article and Find Full Text PDF

Novel Methods to Assess Tumor Burden and Minimal Residual Disease in Genitourinary Cancers.

Eur Urol

December 2024

Department of Cancer Medicine and INSERM U981, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France.

Article Synopsis
  • Advances in molecular diagnostics are transforming how prostate, renal, and urothelial cancers are assessed, offering more accurate detection methods for disease burden and minimal residual disease (MRD).
  • A literature review from 1980-2024 highlights emerging radiographic and molecular tools aimed at improving disease quantification and monitoring through innovative technologies and biomarker-informed trials.
  • New developments, like novel radiotracers and molecular detection methods (e.g., circulating tumor DNA), provide insights into disease mechanisms and have the potential to enhance clinical management, although full MRD application is still in progress.
View Article and Find Full Text PDF

An integrative TAD catalog in lymphoblastoid cell lines discloses the functional impact of deletions and insertions in human genomes.

Genome Res

December 2024

Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA;

The human genome is packaged within a three-dimensional (3D) nucleus and organized into structural units known as compartments, topologically associating domains (TADs), and loops. TAD boundaries, separating adjacent TADs, have been found to be well conserved across mammalian species and more evolutionarily constrained than TADs themselves. Recent studies show that structural variants (SVs) can modify 3D genomes through the disruption of TADs, which play an essential role in insulating genes from outside regulatory elements' aberrant regulation.

View Article and Find Full Text PDF