246 results match your criteria: "Mitsubishi-kagaku Institute of Life Sciences[Affiliation]"

The cholestane amide conjugate MCC-257 has been shown to augment the effects of nerve growth factor (NGF) on cell survival and on tyrosine phosphorylation of the TrkA receptor in PC12 cells. Recent findings suggest that signaling pathways downstream of Trk are regulated independently. We describe here our finding that the NGF-induced phosphorylation of both ERK and Akt are accelerated by MCC-257.

View Article and Find Full Text PDF
Article Synopsis
  • Glycosylation of proteins, like in the case of the Drosophila protein Chaoptin (Chp), plays a crucial role in various biological systems and is important for photoreceptor cell development.
  • Mutations in one-third of the potential N-linked glycosylation sites on Chp impaired its ability to adhere to cells when tested in a lab setting.
  • Additionally, altering two-thirds of these glycosylation sites significantly reduced the levels of Chp protein, highlighting the importance of N-linked glycosylation for both the stability and function of Chp.
View Article and Find Full Text PDF

Caloric restriction (CR) is known to promote longevity in various species. Sirtuin-mediated deacetylation has been shown to be related to the promotion of longevity in some species. Here, we show that CR of rats led to an increase in the level of Werner syndrome protein (WRN), a recognized DNA repair protein.

View Article and Find Full Text PDF

Sumoylation is a post-translational modification process that is supposed to be implicated in the pathogenesis of several neurodegenerative diseases. Recently, the microtubule-associated protein Tau was identified as a target for sumoylation in the analysis of the transfected cells. We investigated the localization of SUMO-1 protein in APP transgenic mice and mutant Tau transgenic mice, and found that SUMO-1 immunoreactivity was co-localized with phosphorylated Tau aggregates in amyloid plaques of APP transgenic mice.

View Article and Find Full Text PDF

Many members of the Fox family are transcription factors that regulate the morphogenesis of various organs. In the present study, we examined the expression pattern of Foxp4, a member of the Foxp subfamily, and compared its pattern with the patterns of Foxp2 and Foxp1 in the developing rat brain. In general, these three Foxp genes shared partially overlapping and yet differentially regulated expression patterns in the striatum, the cerebral cortex, and the thalamus during development.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers found that Sema 3D and Sema 3F genes are specifically expressed in the developing parathyroid and thymus, which arise from a common structure in mice.
  • Sema 3D shows a parathyroid-specific expression pattern, persisting throughout development, while Sema 3F is expressed in both tissues but at decreasing levels over time.
  • The study suggests that Semaphorin signaling is important for the interaction between the parathyroid, thymus, and nearby tissues like nerves and blood vessels, as well as in lymphoid cell recruitment.
View Article and Find Full Text PDF

Today, two-dimensional mass spectrometry analysis of biological tissues by means of a technique called mass imaging, mass spectrometry imaging (MSI), or imaging mass spectrometry (IMS) has found application in investigating the distribution of moleculesMSI with matrix-assisted laser desorption/ionization (MALDI) and secondary ion MS (SIMS). However, the size of the matrix crystal and the migration of analytes can decrease the spatial resolution in MALDI, and SIMS can only ionize compounds with relatively low molecular weights. To overcome these problems, we developed a nanoparticle-assisted laser desorption/ionization (nano-PALDI)-based MSI.

View Article and Find Full Text PDF

By using the developing monkey brain as a model for human development, we investigated the expression pattern of the FOXP2 gene, a member of the FOX family of transcription factors in the developing monkey brain, and compared its expression pattern with transcription factors PBX3, MEIS2, and FOXP1. We observed FOXP2 mRNA expression in several brain structures, including the striatum, the islands of Calleja and other basal forebrain regions, the cerebral cortex, and the thalamus. FOXP2 mRNA was preferentially expressed in striosomal compartments during striatal development.

View Article and Find Full Text PDF

A novel invariant Valpha19-Jalpha33 T cell receptor alpha chain, first found in mammalian blood cells, was primarily expressed by natural killer T cell repertoire (Valpha19 NKT cell). Attempts have been made to find specific antigens for Valpha19 NKT cells. A series of alpha- and beta-glycosyl ceramides were synthesized and tested whether they had potential to stimulate the cells isolated from invariant Valpha19-Jalpha33 TCR transgenic mice (where the development of Valpha19 NKT cells is facilitated).

View Article and Find Full Text PDF

Synaptopodin (SYNPO) is an F-actin interacting protein expressed in dendritic spines and upregulated during the late-phase of long-term potentiation. Here, we investigated whether SYNPO regulates spine morphology through interactions with F-actin, the major cytoskeletal element of spines. In primary hippocampal neuron cultures, both endogenous and exogenous SYNPO localized preferentially in large spines under basal conditions.

View Article and Find Full Text PDF

Ficolins are pathogen-recognition molecules in innate immune systems. The crystal structure of the human M-ficolin recognition domain (FD1) has been determined at 1.9 A resolution, and compared with that of the human fibrinogen gamma fragment, tachylectin-5A, L-ficolin and H-ficolin.

View Article and Find Full Text PDF

Hibernation in mammals is a mysterious biological phenomenon that appears on a seasonal basis for surviving a potentially lethal low body temperature (Tb) near 0 degrees C and protecting organisms from various diseases and harmful events during hibernation. The exact mechanism by which such a unique ability is seasonally developed is still unknown. On the basis of our previous finding that the source of calcium ions for excitation-contraction coupling in myocardium of chipmunks, a rodent hibernator, is seasonally modulated for hibernation, the liver-derived hibernation-specific protein (HP) complex was discovered.

View Article and Find Full Text PDF

Benzalacetone synthase (BAS) from Rheum palmatum is a plant-specific type III polyketide synthase that catalyzes the one-step decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the diketide 4-(4-hydroxyphenyl)-but-3-en-2-one. Recombinant BAS expressed in Escherichia coli was crystallized by the sitting-drop vapour-diffusion method. The crystals belong to space group P2(1), with unit-cell parameters a = 54.

View Article and Find Full Text PDF

Activin, a member of the transforming growth factor-beta superfamily, is an endocrine hormone that regulates differentiation and proliferation of a wide variety of cells. In the brain, activin protects neurons from ischemic damage. In this study, we demonstrate that activin modulates anxiety-related behavior by analyzing ACM4 and FSM transgenic mice in which activin and follistatin (which antagonizes the activin signal), respectively, were overexpressed in a forebrain-specific manner under the control of the alphaCaMKII promoter.

View Article and Find Full Text PDF

Attempts have been made to find specific antigens for a novel NKT cell subset bearing invariant V alpha 19-J alpha 33 TCR alpha chains (V alpha 19 NKT cell). Comprehensive examinations revealed substantial antigenic activity in synthetic alpha-mannosylceramide (ManCer) that was presented by MR1. Structural modification of the sphingosine moiety of alpha-ManCer improved antigenic activity to enhance either Th1 or Th2 -promoting cytokine production by V alpha 19 NKT cells.

View Article and Find Full Text PDF

Certain proteins can undergo polyglycylation and polyglutamylation. Polyglutamylases (glutamate ligases) have recently been identified in a family of tubulin tyrosine ligase-like (TTLL) proteins. However, no polyglycylase (glycine ligase) has yet been reported.

View Article and Find Full Text PDF

Methods to study gene expression in live cells over time have been limited. One known method is the luciferase assay, which measures the luminescence of luciferase by coupling its expression to the promoter of a gene under study. This luminescence in cells can be measured over time by a luminometer.

View Article and Find Full Text PDF

The molecular dissection of human MCM2, a constituent of MCM2-7 licensing factor complex, was performed to identify the region responsible for its biochemical activities. Partial digestion with trypsin dissected the MCM2 protein into a central region (148-676) containing ATPase motifs and a C-terminal region (677-895). These two fragments, along with three other fragments (148-441, 442-676 and 442-895), were produced using the wheat germ cell-free system and were examined for their ability to inhibit MCM4/6/7 helicase activity.

View Article and Find Full Text PDF

Despite the increasing attention being paid to the functions of glycoproteins, their structural analysis is still difficult and hinders functional investigations. Structural analysis of post-translationally modified proteins is thought to be achieved using methods frequently utilized in proteomics research; however, the same methods cannot be used for glycosylated proteins. One of the difficulties associated with the physiochemical properties of glycopeptides and peptides is that the detection of the former is considerably more difficult, because of the existence of glycoforms that increase molecular weight and reduces quantities of individual species.

View Article and Find Full Text PDF

Here, we identified human myogenic progenitor cells coexpressing Pax7, a marker of muscle satellite cells and bone-specific alkaline phosphatase, a marker of osteoblasts, in regenerating muscle. To determine whether human myogenic progenitor cells are able to act as osteoprogenitor cells, we cultured both primary and immortalized progenitor cells derived from the healthy muscle of a nondystrophic woman. The undifferentiated myogenic progenitors spontaneously expressed two osteoblast-specific proteins, bone-specific alkaline phosphatase and Runx2, and were able to undergo terminal osteogenic differentiation without exposure to an exogenous inductive agent such as bone morphogenetic proteins.

View Article and Find Full Text PDF

We established a protocol to construct complete recombinant genomes from their small contiguous DNA pieces and obtained the genomes of mouse mitochondrion and rice chloroplast using a B. subtilis genome (BGM) vector. This method allows the design of any recombinant genomes, valuable not only for fundamental research in systems biology and synthetic biology but also for various applications in the life sciences.

View Article and Find Full Text PDF

In mammals, three ras genes, H-ras, N-ras and K-ras, encode homologous but distinct 21-kDa Ras proteins. We examined the in vivo functional relationship of the three ras genes in mouse embryonic development by investigating the phenotypes of mice deficient in one or multiple ras genes. H-ras-/- mice and N-ras-/- mice as well as a substantial proportion of H-ras-/-/N-ras-/- mice expressing only the K-ras gene were viable, while K-ras-/- mice were embryonically lethal, as have been reported previously.

View Article and Find Full Text PDF

A novel aldo-keto reductase (AKR) was cloned and sequenced from roots of Aloe arborescens by a combination of RT-PCR using degenerate primers based on the conserved sequences of plant polyketide reductases (PKRs) and cDNA library screening by oligonucleotide hybridization. A. arborescens AKR share similarities with known plant AKRs (40-66% amino acid sequence identity), maintaining most of the active-site residues conserved in the AKR superfamily enzymes.

View Article and Find Full Text PDF

Octaketide synthase (OKS) from Aloe arborescens is a plant-specific type III polyketide synthase that produces SEK4 and SEK4b from eight molecules of malonyl-CoA. Recombinant OKS expressed in Escherichia coli was crystallized by the hanging-drop vapour-diffusion method. The crystals belonged to space group I422, with unit-cell parameters a = b = 110.

View Article and Find Full Text PDF