10 results match your criteria: "Milton S. Hershey Medical Center at Penn State University[Affiliation]"

Combination of cetuximab with met inhibitor in control of cetuximab-resistant oral squamous cell carcinoma.

Am J Transl Res

April 2019

Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University Foshan 528000, Guangdong, China.

To investigate the underlying molecular mechanisms contributing to oral squamous cell carcinoma (OSCC) cell resistance to the epidermal growth factor receptor (EGFR) inhibitor. OSCC cell lines HSC-2 and HSC-3 were assessed for drug treatment, cell viability, and gene expression and the online gene expression in OSCC tissues was analyzed for association with OSCC prognosis. HSC-2 and HSC-3 cells expressed high EGFR levels, but hepatocyte growth factor (HGF) treatment induced cetuximab resistance, whereas the Met inhibitor PHA-665752 as well as Met siRNA was able to restore OSCC cell sensitivity to cetuximab.

View Article and Find Full Text PDF

Chronic rhinosinusitis (CRS) is a common chronic inflammatory disease of the upper airways involving nasal cavity and sinus. Deriving both from its clinical complexity with protean clinical manifestations as well its pathogenetic heterogeneity, the molecular mechanisms contributing to the pathogenesis of CRS remain unclear, and attract a wide interest in the field. Current evidences indicate that IL-17A is highly expressed in chronic rhinosinusitis with nasal polyps (CRSwNP).

View Article and Find Full Text PDF

Role of Vitamin A in the Immune System.

J Clin Med

September 2018

Department of Medicine, Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA 17033, USA.

Vitamin A (VitA) is a micronutrient that is crucial for maintaining vision, promoting growth and development, and protecting epithelium and mucus integrity in the body. VitA is known as an anti-inflammation vitamin because of its critical role in enhancing immune function. VitA is involved in the development of the immune system and plays regulatory roles in cellular immune responses and humoral immune processes.

View Article and Find Full Text PDF

Tetraspanins are transmembrane proteins that modulate multiple diverse biological processes, including signal transduction, cell-cell communication, immunoregulation, tumorigenesis, cell adhesion, migration, and growth and differentiation. Here, we provide a systematic review of the involvement of tetraspanins and their partners in the regulation and function of B cells, including mechanisms associated with antigen presentation, antibody production, cytokine secretion, co-stimulator expression, and immunosuppression. Finally, we direct our focus to the signaling mechanisms, evolutionary conservation aspects, expression, and potential therapeutic strategies that could be based on tetraspanins and their interacting partners.

View Article and Find Full Text PDF

Induced pluripotent stem cell-derived mesenchymal stem cells activate quiescent T cells and elevate regulatory T cell response via NF-κB in allergic rhinitis patients.

Stem Cell Res Ther

June 2018

Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China.

Background: It has been demonstrated previously that induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (MSCs) have immunosuppressive effects on activated T cells. However, the effects of iPSC-MSCs on quiescent T cells are still unknown. The aim of this study was to identify the immunomodulatory role of iPSC-MSCs on resting peripheral blood mononuclear cells (PBMCs) from allergic rhinitis (AR) patients.

View Article and Find Full Text PDF

Tumor necrosis factor α (TNFα) is a pleiotropic cytokine which signals through TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2). Emerging evidence has demonstrated that TNFR1 is ubiquitously expressed on almost all cells, while TNFR2 exhibits a limited expression, predominantly on regulatory T cells (Tregs). In addition, the signaling pathway by sTNF TNFR1 mainly triggers pro-inflammatory pathways, and mTNF binding to TNFR2 usually initiates immune modulation and tissue regeneration.

View Article and Find Full Text PDF

Background: Allergic and autoimmune diseases comprise a group of inflammatory disorders caused by aberrant immune responses in which CD25+ Forkhead box P3-positive (FOXP3+) T regulatory (Treg) cells that normally suppress inflammatory events are often poorly functioning. This has stimulated an intensive investigative effort to find ways of increasing Tregs as a method of therapy for these conditions. One such line of investigation includes the study of how ligation of Toll-like receptors (TLRs) by CpG oligonucleotides (ODN) results in an immunostimulatory cascade that leads to induction of T-helper (Th) type 1 and Treg-type immune responses.

View Article and Find Full Text PDF

B7-H4, one of the co-stimulatory molecules of the B7 family, has been shown to play an important role in negatively regulating the adaptive immune response by inhibiting the proliferation, activation, and cytokine production of T cells. In this study, we investigate the role of B7-H4 in development of systemic lupus erythematosus (SLE). We investigated a murine model of SLE using transfer of bone marrow-derived dendritic cells (BMDCs) that were incubated with activated syngeneic lymphocyte-derived DNA.

View Article and Find Full Text PDF

Antibody-mediated rejection (AMR) has emerged as the major cause of renal allograft dysfunction, and more effective strategies need to be explored for improving transplant outcomes. Regulatory T cells (Tregs), consisting of at least natural and induced Treg subsets, suppress effector responses at multiple levels and play a key role in transplantation tolerance. In this study, we investigated the effect of induced Tregs (iTregs) on preventing antibody-mediated renal injury and rejection in a mouse model.

View Article and Find Full Text PDF

Vitamin D is one of the essential nutrients to sustain the human health. As a member of the steroid hormone family, it has a classic role in regulating metabolism of calcium and a non-classic role in affecting cell proliferation and differentiation. Epidemiological studies have shown that 25OHD deficiency is closely associated with common chronic diseases such as bone metabolic disorders, tumors, cardiovascular diseases, and diabetes.

View Article and Find Full Text PDF