57 results match your criteria: "Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems BASE[Affiliation]"

Antarctica has often been perceived as a pristine continent until the recent few decades as pollutants have been observed accruing in the Antarctic environment. Irresponsible human activities such as accidental oil spills, waste incineration and sewage disposal are among the primary anthropogenic sources of heavy metal contaminants in Antarctica. Natural sources including animal excrement, volcanism and geological weathering also contribute to the increase of heavy metals in the ecosystem.

View Article and Find Full Text PDF

Systematic conservation planning for Antarctic research stations.

J Environ Manage

February 2024

Global Challenges Program, University of Wollongong, Wollongong, NSW, Australia; University of Johannesburg, Johannesburg, South Africa; Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Australia.

The small ice-free areas of Antarctica are essential locations for both biodiversity and scientific research but are subject to considerable and expanding human impacts, resulting primarily from station-based research and support activities, and local tourism. Awareness by operators of the need to conserve natural values in and around station and visitor site footprints exists, but the cumulative nature of impacts often results in reactive rather than proactive management. With human activity spread across many isolated pockets of ice-free ground, the pathway to the greatest reduction of human impacts within this natural reserve is through better management of these areas, which are impacted the most.

View Article and Find Full Text PDF

Southward migration of the zero-degree isotherm latitude over the Southern Ocean and the Antarctic Peninsula: Cryospheric, biotic and societal implications.

Sci Total Environ

February 2024

WSL Institute for Snow and Avalanche Research (SLF), Davos, Switzerland; School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

The seasonal movement of the zero-degree isotherm across the Southern Ocean and Antarctic Peninsula drives major changes in the physical and biological processes around maritime Antarctica. These include spatial and temporal shifts in precipitation phase, snow accumulation and melt, thawing and freezing of the active layer of the permafrost, glacier mass balance variations, sea ice mass balance and changes in physiological processes of biodiversity. Here, we characterize the historical seasonal southward movement of the monthly near-surface zero-degree isotherm latitude (ZIL), and quantify the velocity of migration in the context of climate change using climate reanalyses and projections.

View Article and Find Full Text PDF
Article Synopsis
  • Methane-cycling is increasingly important in high-latitude ecosystems as global warming releases more organic carbon from permafrost, leading to the study of 387 samples from regions like Siberia, Alaska, and Patagonia.
  • The research integrated physicochemical, climatic, and geographic data with microbial genetic sequences to analyze the structure of methane-related microbial communities, showing that pH significantly influences community composition.
  • Key bioindicator taxa associated with different ecological conditions were identified, such as Methanoregula as generalist methanogens and specific methanotrophs like Methylocystis and Methylobacter, highlighting their role in understanding methane cycling and its impact on greenhouse gas emissions under climate change.
View Article and Find Full Text PDF

The Antarctic toothfish (Dissostichus mawsoni) is the largest notothenioid species in the Southern Ocean, playing a keystone role in the trophic web as a food source for marine mammals and a top predator in deep-sea ecosystems. Most ecological knowledge on this species relies on samples from areas where direct fishing is allowed, whereas in areas closed to fishing, such as the Antarctic Peninsula (AP), there are still key ecological gaps to ensure effective conservation, especially regarding our understanding of its trophic relationships within the ecosystem. Here, we present the first comprehensive study of the feeding behavior of Antarctic toothfish caught in the northern tip of the AP, during two consecutive fishing seasons (2019/20 and 2020/21).

View Article and Find Full Text PDF

Twentieth century industrial whaling pushed several species to the brink of extinction, with fin whales being the most impacted. However, a small, resident population in the Gulf of California was not targeted by whaling. Here, we analyzed 50 whole-genomes from the Eastern North Pacific (ENP) and Gulf of California (GOC) fin whale populations to investigate their demographic history and the genomic effects of natural and human-induced bottlenecks.

View Article and Find Full Text PDF

Background: Long-distance migratory birds spend most of their annual cycle in non-breeding areas. During this period birds must meet their daily nutritional needs and acquire additional energy intake to deal with future events of the annual cycle. Therefore, patterns of space use and movement may emerge as an efficient strategy to maintain a trade-off between acquisition and conservation of energy during the non-breeding season.

View Article and Find Full Text PDF

Microalgae are well known for their metal sorption capacities, but their potential in the remediation of hydrophobic organic compounds has received little attention in polar regions. We evaluated in the laboratory the ability of an Antarctic microalga to remediate diesel hydrocarbons and also investigated physiological changes consequent upon diesel exposure. Using a polyphasic taxonomic approach, the microalgal isolate, WCY_AQ5_1, originally sampled from Greenwich Island (South Shetland Islands, maritime Antarctica) was identified as sp.

View Article and Find Full Text PDF

The Utilisation of Antarctic Microalgae Isolated from Paradise Bay (Antarctic Peninsula) in the Bioremediation of Diesel.

Plants (Basel)

July 2023

Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan.

Research has confirmed that the utilisation of Antarctic microorganisms, such as bacteria, yeasts and fungi, in the bioremediation of diesel may provide practical alternative approaches. However, to date there has been very little attention towards Antarctic microalgae as potential hydrocarbon degraders. Therefore, this study focused on the utilisation of an Antarctic microalga in the bioremediation of diesel.

View Article and Find Full Text PDF

The basal South American notothenioid (Patagonia blennie or róbalo) occupies a uniquely important phylogenetic position in Notothenioidei as the singular closest sister species to the Antarctic cryonotothenioid fishes. Its genome and the traits encoded therein would be the nearest representatives of the temperate ancestor from which the Antarctic clade arose, providing an ancestral reference for deducing polar derived changes. In this study, we generated a gene- and chromosome-complete assembly of the genome using long read sequencing and HiC scaffolding.

View Article and Find Full Text PDF

Genetic Analysis as a Tool to Improve the Monitoring of Stranded Cetaceans in Chile.

Biology (Basel)

May 2023

Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile.

Cetacean strandings are a valuable source of information for several studies from species richness to conservation and management. During the examination of strandings, taxonomic and sex identification might be hindered for several reasons. Molecular techniques are valuable tools to obtain that missing information.

View Article and Find Full Text PDF

Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera.

View Article and Find Full Text PDF

Peatland pools are freshwater bodies that are highly dynamic aquatic ecosystems because of their small size and their development in organic-rich sediments. However, our ability to understand and predict their contribution to both local and global biogeochemical cycles under rapidly occurring environmental change is limited because the spatiotemporal drivers of their biogeochemical patterns and processes are poorly understood. We used (1) pool biogeochemical data from 20 peatlands in eastern Canada, the United Kingdom, and southern Patagonia and (2) multi-year data from an undisturbed peatland of eastern Canada, to determine how climate and terrain features drive the production, delivering and processing of carbon (C), nitrogen (N), and phosphorus (P) in peatland pools.

View Article and Find Full Text PDF

Dramatic decreases of chinstrap penguin populations across the Antarctic Peninsula (AP) are thought to be influenced by climate-driven changes affecting its main prey, the Antarctic krill, however, empirical evidence supporting such hypotheses are scarce. By coupling data on breeding chinstrap penguins, environmental remote sensing and estimates of krill acoustic density, we were able to demonstrate that penguins substantially increased their foraging effort in a year of low krill availability, with consequent reduction in breeding success. A winter of low sea ice cover followed by a summer/spring with stronger wind and lower marine productivity explained the lower and deeper krill availability.

View Article and Find Full Text PDF

High Andean Steppes of Southern Chile Contain Little-Explored Lichen Symbionts.

J Fungi (Basel)

March 2023

Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile.

lichens can colonize extreme habitats, such as high-elevation ecosystems, but their biodiversity is still largely unknown in these environments, especially in the southern hemi- sphere. We assessed the genetic diversity of mycobionts and cyanobionts of 60 lichens collected in three high Andean steppes of southern Chile using LSU, , COR3 and ITS loci for mycobionts, and SSU and loci for cyanobionts. We obtained 240 sequences for the different mycobiont markers and 118 for the cyanobiont markers, including the first report of sequences of through modifying a previously designed primer.

View Article and Find Full Text PDF

Resilience theory has taken center stage in tackling the challenge of wetland recovery on a fast-changing planet. Because of waterbirds' enormous dependence on wetlands, their numbers have long been used as surrogates for wetland recovery over time. However, immigration of individuals can mask actual recoveries at a given wetland.

View Article and Find Full Text PDF

Littorinid snails are present in most coastal areas globally, playing a significant role in the ecology of intertidal communities. is a marine gastropod genus distributed exclusively in the Southern Hemisphere, with 21 species reported from South America, the sub-Antarctic islands, Antarctica, New Zealand, Australia and Tasmania. Here, an updated database of 21 species generated from a combination of sources is presented: 1) new field sampling data; 2) published records; 3) the Global Biodiversity Information Facility (GBIF) and The Atlas of Living Australia (ALA), to provide a comprehensive description of the known geographic distribution of the genus and detailed occurrences for each of the 21 species.

View Article and Find Full Text PDF

Terrestrial organisms and ecosystems are being exposed to new and rapidly changing combinations of solar UV radiation and other environmental factors because of ongoing changes in stratospheric ozone and climate. In this Quadrennial Assessment, we examine the interactive effects of changes in stratospheric ozone, UV radiation and climate on terrestrial ecosystems and biogeochemical cycles in the context of the Montreal Protocol. We specifically assess effects on terrestrial organisms, agriculture and food supply, biodiversity, ecosystem services and feedbacks to the climate system.

View Article and Find Full Text PDF

Does experimental seaweed cultivation affect benthic communities and shorebirds? Applications for extensive aquaculture.

Ecol Appl

April 2023

Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Vadivia, Chile.

Extensive seaweed aquaculture is a growing industry expected to expand globally due to its relatively low impact and benefits in the form of ecosystem services. However, seaweeds are ecosystem engineers that may alter coastal environments by creating complex habitats on previously bare mudflats. These changes may scale up to top-consumers, particularly migratory shorebirds, species of conservation concern that regulate trophic webs at these habitats.

View Article and Find Full Text PDF

Fungal and fungal-like diversity in marine sediments from the maritime Antarctic assessed using DNA metabarcoding.

Sci Rep

December 2022

Laboratório de Microbiologia Polar E Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, 31270-901, Brazil.

We assessed the fungal and fungal-like sequence diversity present in marine sediments obtained in the vicinity of the South Shetland Islands (Southern Ocean) using DNA metabarcoding through high-throughput sequencing (HTS). A total of 193,436 DNA reads were detected in sediment obtained from three locations: Walker Bay (Livingston Island) at 52 m depth (48,112 reads), Whalers Bay (Deception Island) at 151 m (104,704) and English Strait at 404 m (40,620). The DNA sequence reads were assigned to 133 distinct fungal amplicon sequence variants (ASVs) representing the phyla Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, Glomeromycota, Monoblepharomycota, Mucoromycota and Rozellomycota and the fungal-like Straminopila.

View Article and Find Full Text PDF

Unraveling the morphological patterns of a subantarctic eelpout: a geometric morphometric approach.

Integr Zool

March 2023

Laboratorio de Ictiología e Interacciones Biofísicas (LABITI), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.

Phenotypic variation in organisms depends on the genotype and the environmental constraints of the habitat that they exploit. Therefore, for marine species inhabiting contrasting aquatic conditions, it is expected to find covariation between the shape and its spatial distribution. We studied the morphology of the head and cephalic sensory canals of the eelpout Austrolycus depressiceps (4.

View Article and Find Full Text PDF

We evaluated the diversity and enzymatic activities of culturable fungi recovered from cotton baits submerged for 2 years in Hennequin Lake, King George Island, and from benthic biofilms in Kroner Lake, Deception Island, South Shetland Islands, maritime Antarctica. A total of 154 fungal isolates were obtained, representing in rank abundance the phyla Ascomycota, Basidiomycota and Mortierellomycota. Thelebolus globosus, Goffeauzyma sp.

View Article and Find Full Text PDF

We describe a new taxon of terrestrial bird of the genus Aphrastura (rayaditos) inhabiting the Diego Ramírez Archipelago, the southernmost point of the American continent. This archipelago is geographically isolated and lacks terrestrial mammalian predators as well as woody plants, providing a contrasted habitat to the forests inhabited by the other two Aphrastura spp. Individuals of Diego Ramírez differ morphologically from Aphrastura spinicauda, the taxonomic group they were originally attributed to, by their larger beaks, longer tarsi, shorter tails, and larger body mass.

View Article and Find Full Text PDF

Increased research attention is being given to bacterial diversity associated with lichens. Rock tripe lichens () were collected from two distinct Antarctic biological regions, the continental region near the Japanese Antarctic station (Syowa Station) and the maritime Antarctic South Orkney Islands (Signy Island), in order to compare their bacterial floras and potential metabolism. Bulk DNA extracted from the lichen samples was used to amplify the 18S rRNA gene and the V3-V4 region of the 16S rRNA gene, whose amplicons were Sanger- and MiSeq-sequenced, respectively.

View Article and Find Full Text PDF