217 results match your criteria: "Met Office Hadley Centre[Affiliation]"

The time series of monthly global mean surface temperature (GST) since 1891 is successfully reconstructed from known natural and anthropogenic forcing factors, including internal climate variability, using a multiple regression technique. Comparisons are made with the performance of 40 CMIP5 models in predicting GST. The relative contributions of the various forcing factors to GST changes vary in time, but most of the warming since 1891 is found to be attributable to the net influence of increasing greenhouse gases and anthropogenic aerosols.

View Article and Find Full Text PDF

Globally, latent heating associated with a change in precipitation is balanced by changes to atmospheric radiative cooling and sensible heat fluxes. Both components can be altered by climate forcing mechanisms and through climate feedbacks, but the impacts of climate forcing and feedbacks on sensible heat fluxes have received much less attention. Here we show, using a range of climate modelling results, that changes in sensible heat are the dominant contributor to the present global-mean precipitation change since preindustrial time, because the radiative impact of forcings and feedbacks approximately compensate.

View Article and Find Full Text PDF
Article Synopsis
  • The concept of feedback is crucial for understanding how changes in a system, like the climate, can be either intensified or reduced by the system's own mechanisms.
  • In polar regions, climate is influenced by various interactions among the atmosphere, ocean, sea ice, ice sheets, and land surfaces, which are important for climate assessment.
  • Accurately measuring these polar feedbacks is essential for improving climate models, understanding polar climate change processes, and reducing uncertainty in future climate projections.
View Article and Find Full Text PDF

A wide range of climate vulnerability and risk assessments have been implemented using different approaches at different scales, some with a broad multi-sectoral scope and others focused on single risks or sectors. This paper describes the novel approach to vulnerability and risk assessment which was designed and put into practice in the United Kingdom's Second Climate Change Risk Assessment (CCRA2) so as to build upon its earlier assessment (CCRA1). First, we summarize and critique the CCRA1 approach, and second describe the steps taken in the CCRA2 approach in detail, providing examples of how each was applied in practice.

View Article and Find Full Text PDF

The northern North Atlantic is important globally both through its impact on the Atlantic Meridional Overturning Circulation (AMOC) and through widespread atmospheric teleconnections. The region has been shown to be potentially predictable a decade ahead with the skill of decadal predictions assessed against reanalyses of the ocean state. Here, we show that the prediction skill in this region is strongly dependent on the choice of reanalysis used for validation, and describe the causes.

View Article and Find Full Text PDF

We projected changes in weather extremes, hydrological impacts and vulnerability to food insecurity at global warming of 1.5°C and 2°C relative to pre-industrial, using a new global atmospheric general circulation model HadGEM3A-GA3.0 driven by patterns of sea-surface temperatures and sea ice from selected members of the 5th Coupled Model Intercomparison Project (CMIP5) ensemble, forced with the RCP8.

View Article and Find Full Text PDF

The effectiveness of stringent climate stabilization scenarios for coastal areas in terms of reduction of impacts/adaptation needs and wider policy implications has received little attention. Here we use the Warming Acidification and Sea Level Projector Earth systems model to calculate large ensembles of global sea-level rise (SLR) and ocean pH projections to 2300 for 1.5°C and 2.

View Article and Find Full Text PDF

A number of studies have examined the size of the allowable global cumulative carbon budget compatible with limiting twenty-first century global average temperature rise to below 2°C and below 1.5°C relative to pre-industrial levels. These estimates of cumulative emissions have a number of uncertainties including those associated with the climate sensitivity and the global carbon cycle.

View Article and Find Full Text PDF
Article Synopsis
  • The study models changes in permafrost and carbon storage projections from 2010 to 2299 based on climate scenarios RCP4.5 and RCP8.5.
  • Significant permafrost loss is forecasted, with estimates ranging from 3-5 million km² for RCP4.5 and 6-16 million km² for RCP8.5.
  • Cumulative soil carbon changes show potential losses of up to 652 Pg C under RCP8.5, while effective climate mitigation in the 21st century may reduce negative impacts from the permafrost carbon-climate feedback.
View Article and Find Full Text PDF

An integrated understanding of the biogeochemical consequences of climate extremes and land use changes is needed to constrain land-surface feedbacks to atmospheric CO from associated climate change. Past assessments of the global carbon balance have shown particularly high uncertainty in Southeast Asia. Here, we use a combination of model ensembles to show that intensified land use change made Southeast Asia a strong source of CO from the 1980s to 1990s, whereas the region was close to carbon neutral in the 2000s due to an enhanced CO fertilization effect and absence of moderate-to-strong El Niño events.

View Article and Find Full Text PDF

Future projections of east Amazonian precipitation indicate drying, but they are uncertain and poorly understood. In this study we analyse the Amazonian precipitation response to individual atmospheric forcings using a number of global climate models. Black carbon is found to drive reduced precipitation over the Amazon due to temperature-driven circulation changes, but the magnitude is uncertain.

View Article and Find Full Text PDF
Article Synopsis
  • The Montreal Protocol has effectively reduced emissions of substances that harm the ozone layer, leading to an expected recovery of stratospheric ozone levels in this century.
  • There is significant uncertainty regarding how quickly ozone levels will recover, particularly in the Northern Hemisphere, where a dipole pattern of ozone anomalies has been identified between Eurasia (decreasing ozone) and North America (increasing ozone).
  • Ozone recovery in late winter may depend not only on the decrease of harmful substances but also on shifts in the polar vortex, potentially causing delays in recovery across certain regions of the Northern Hemisphere.
View Article and Find Full Text PDF

Ambient air pollution from ozone and fine particulate matter is associated with premature mortality. As emissions from one continent influence air quality over others, changes in emissions can also influence human health on other continents. We estimate global air pollution-related premature mortality from exposure to PM and ozone, and the avoided deaths from 20% anthropogenic emission reductions from six source regions, North America (NAM), Europe (EUR), South Asia (SAS), East Asia (EAS), Russia/Belarus/Ukraine (RBU) and the Middle East (MDE), three global emission sectors, Power and Industry (PIN), Ground Transportation (TRN) and Residential (RES) and one global domain (GLO), using an ensemble of global chemical transport model simulations coordinated by the second phase of the Task Force on Hemispheric Transport of Air Pollution (TF-HTAP2), and epidemiologically-derived concentration-response functions.

View Article and Find Full Text PDF

As the applications of Earth system models (ESMs) move from general climate projections toward questions of mitigation and adaptation, the inclusion of land management practices in these models becomes crucial. We carried out a survey among modeling groups to show an evolution from models able only to deal with land-cover change to more sophisticated approaches that allow also for the partial integration of land management changes. For the longer term a comprehensive land management representation can be anticipated for all major models.

View Article and Find Full Text PDF

This review examines the current literature on the effects of future emissions and climate change on particulate matter (PM) and O air quality and on the consequent health impacts, with a focus on Europe. There is considerable literature on the effects of climate change on O but fewer studies on the effects of climate change on PM concentrations. Under the latest Intergovernmental Panel on Climate Change (IPCC) 5th assessment report (AR5) Representative Concentration Pathways (RCPs), background O entering Europe is expected to decrease under most scenarios due to higher water vapour concentrations in a warmer climate.

View Article and Find Full Text PDF

Relationship of tropospheric stability to climate sensitivity and Earth's observed radiation budget.

Proc Natl Acad Sci U S A

December 2017

National Centre for Atmospheric Science-Climate, University of Reading, Reading RG6 6BB, United Kingdom.

Climate feedbacks generally become smaller in magnitude over time under CO forcing in coupled climate models, leading to an increase in the effective climate sensitivity, the estimated global-mean surface warming in steady state for doubled CO Here, we show that the evolution of climate feedbacks in models is consistent with the effect of a change in tropospheric stability, as has recently been hypothesized, and the latter is itself driven by the evolution of the pattern of sea-surface temperature response. The change in climate feedback is mainly associated with a decrease in marine tropical low cloud (a more positive shortwave cloud feedback) and with a less negative lapse-rate feedback, as expected from a decrease in stability. Smaller changes in surface albedo and humidity feedbacks also contribute to the overall change in feedback, but are unexplained by stability.

View Article and Find Full Text PDF

An accurate estimate of global hydroxyl radical (OH) abundance is important for projections of air quality, climate, and stratospheric ozone recovery. As the atmospheric mixing ratios of methyl chloroform (CHCCl) (MCF), the commonly used OH reference gas, approaches zero, it is important to find alternative approaches to infer atmospheric OH abundance and variability. The lack of global bottom-up emission inventories is the primary obstacle in choosing a MCF alternative.

View Article and Find Full Text PDF

We investigate the climate response to increased concentrations of black carbon (BC), as part of the Precipitation Driver Response Model Intercomparison Project (PDRMIP). A tenfold increase in BC is simulated by 9 global coupled-climate models, producing a model-median effective radiative forcing (ERF) of 0.82 (ranging from 0.

View Article and Find Full Text PDF

Solar geoengineering refers to a range of proposed methods for counteracting global warming by artificially reducing sunlight at Earth's surface. The most widely known solar geoengineering proposal is stratospheric aerosol injection (SAI), which has impacts analogous to those from volcanic eruptions. Observations following major volcanic eruptions indicate that aerosol enhancements confined to a single hemisphere effectively modulate North Atlantic tropical cyclone (TC) activity in the following years.

View Article and Find Full Text PDF

In this work, we use the Clouds and the Earth's Radiant Energy System (CERES) FluxByCloudTyp data product, which calculates TOA shortwave and longwave fluxes for cloud categories defined by cloud optical depth () and cloud top pressure ( ), to evaluate the HadGEM2-A model with a simulator. The CERES Flux-by-cloud type simulator is comprised of a cloud generator that produces subcolumns with profiles of binary cloud fraction, a cloud property simulator that determines the (, ) cloud type for each subcolumn, and a radiative transfer model that calculates TOA fluxes. The identification of duplicate atmospheric profiles reduces the number of radiative transfer calculations required by approximately 97.

View Article and Find Full Text PDF

Phosphorus losses from land to water will be impacted by climate change and land management for food production, with detrimental impacts on aquatic ecosystems. Here we use a unique combination of methods to evaluate the impact of projected climate change on future phosphorus transfers, and to assess what scale of agricultural change would be needed to mitigate these transfers. We combine novel high-frequency phosphorus flux data from three representative catchments across the UK, a new high-spatial resolution climate model, uncertainty estimates from an ensemble of future climate simulations, two phosphorus transfer models of contrasting complexity and a simplified representation of the potential intensification of agriculture based on expert elicitation from land managers.

View Article and Find Full Text PDF

In winter 2013/14 a succession of storms hit the UK leading to record rainfall and flooding in many regions including south east England. In the Thames river valley there was widespread flooding, with clean-up costs of over £1 billion. There was no observational precedent for this level of rainfall.

View Article and Find Full Text PDF

Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets-consistent with expectations-but had no discernible effect on other cloud properties.

View Article and Find Full Text PDF

As the global temperature increases with changing climate, precipitation rates and patterns are affected through a wide range of physical mechanisms. The globally averaged intensity of extreme precipitation also changes more rapidly than the globally averaged precipitation rate. While some aspects of the regional variation in precipitation predicted by climate models appear robust, there is still a large degree of inter-model differences unaccounted for.

View Article and Find Full Text PDF