174 results match your criteria: "Mellon Institute[Affiliation]"

This review summarizes key virulence factors associated with group B (GBS), a significant pathogen particularly affecting pregnant women, fetuses, and infants. Beginning with an introduction to the historical transition of GBS from a zoonotic pathogen to a prominent cause of human infections, particularly in the perinatal period, the review describes major disease manifestations caused by GBS, including sepsis, meningitis, chorioamnionitis, pneumonia, and others, linking each to specific virulence mechanisms. A detailed exploration of the genetic basis for GBS pathogenicity follows, emphasizing the roles of capsules in pathogenesis and immune evasion.

View Article and Find Full Text PDF

Group B (GBS; ) is an important pathobiont capable of colonizing various host environments, contributing to severe perinatal infections. Surface proteins play critical roles in GBS-host interactions, yet comprehensive studies of these proteins' functions have been limited by genetic manipulation challenges. This study leveraged a CRISPR interference (CRISPRi) library to target genes encoding surface-trafficked proteins in GBS, identifying their roles in modulating macrophage cytokine responses.

View Article and Find Full Text PDF

High ferritin is an important and sensitive biomarker for the various forms of hemophagocytic lymphohistiocytosis (HLH), a diverse and deadly group of cytokine storm syndromes. Early action to prevent immunopathology in HLH often includes empiric immunomodulation, which can complicate etiologic work-up and prevent collection of early/pre-treatment research samples. To address this, we instituted an alert system at UPMC Children's Hospital where serum ferritin > 1000 ng/mL triggered real-time chart review, assessment of whether the value reflected "inflammatory hyperferritnemia (IHF)", and biobanking of remnant samples from consenting IHF patients.

View Article and Find Full Text PDF

High ferritin is an important and sensitive biomarker for hemophagocytic lymphohistiocytosis (HLH), a diverse and deadly group of cytokine storm syndromes. Early action to prevent immunopathology in HLH often includes empiric immunomodulation, which can complicate etiologic work-up and prevent collection of early/pre-treatment research samples. To address this, we instituted an alert system where serum ferritin > 1000ng/mL triggered real-time chart review, assessment of whether the value reflected "inflammatory hyperferritnemia (IHF)", and biobanking of remnant samples from consenting IHF patients.

View Article and Find Full Text PDF
Article Synopsis
  • Bacterial meningitis is a severe infection affecting the central nervous system, primarily caused by Group B Streptococcus (GBS), especially in neonates.
  • Researchers used RNA-seq analysis on GBS interacting with brain endothelial cells to identify 430 significantly altered genes, mostly downregulated during infection, indicating changes in virulence.
  • The study highlights the effectiveness of RNA-seq in uncovering GBS gene expression changes, which enhances understanding of its ability to breach the blood-brain barrier.
View Article and Find Full Text PDF

The vaginal microbiota plays a pivotal role in reproductive, sexual, and perinatal health and disease. Unlike the well-established connections between diet, metabolism, and the intestinal microbiota, parallel mechanisms influencing the vaginal microbiota and pathogen colonization remain overlooked. In this study, we combine a mouse model of strain COH1 [group B (GBS)] vaginal colonization with a mouse model of pubertal-onset obesity to assess diet as a determinant of vaginal microbiota composition and its role in colonization resistance.

View Article and Find Full Text PDF

Treating pregnancy-related disorders is exceptionally challenging because the threat of maternal and/or fetal toxicity discourages the use of existing medications and hinders new drug development. One potential solution is the use of lipid nanoparticle (LNP) RNA therapies, given their proven efficacy, tolerability, and lack of fetal accumulation. Here, we describe LNPs for efficacious mRNA delivery to maternal organs in pregnant mice via several routes of administration.

View Article and Find Full Text PDF

Objective: Term infants born to mothers with chorioamnionitis are at risk for early-onset sepsis (EOS). We aimed to measure the impact of changing from a categorical to a modified-observational EOS screening approach on NICU admission, antibiotic utilization, and hospitalization costs.

Study Design: Single-center retrospective pre-post cohort study of full-term infants born to mothers with chorioamnionitis.

View Article and Find Full Text PDF

Group B (GBS) is a significant global cause of serious infections, most of which affect pregnant women, newborns, and infants. Studying GBS genetic mutant strains is a valuable approach for learning more about how these infections are caused and is a key step toward developing more effective preventative and treatment strategies. In this resource report, we describe a newly created library of defined GBS genetic mutants, containing over 1,900 genetic variants, each with a unique disruption to its chromosome.

View Article and Find Full Text PDF

Stability and heterogeneity in the antimicrobiota reactivity of human milk-derived immunoglobulin A.

J Exp Med

August 2023

Pediatrics Department, Infectious Disease Section, R.K. Mellon Institute for Pediatric Research, UPMC Children's Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

Immunoglobulin A (IgA) is secreted into breast milk and is critical for both protecting against enteric pathogens and shaping the infant intestinal microbiota. The efficacy of breast milk-derived maternal IgA (BrmIgA) is dependent upon its specificity; however, heterogeneity in BrmIgA binding ability to the infant microbiota is not known. Using a flow cytometric array, we analyzed the reactivity of BrmIgA against bacteria common to the infant microbiota and discovered substantial heterogeneity between all donors, independent of preterm or term delivery.

View Article and Find Full Text PDF

Insights into the role of HIV-1 Vpu in modulation of NF-ĸB signaling pathways.

mBio

August 2023

Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.

HIV-1 inhibits the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) to prevent the induction of a proinflammatory state but also activates the NF-κB pathway to promote viral transcription. Thus, optimal regulation of this pathway is important for the viral life cycle. In recent work, Pickering et al (3) demonstrate that HIV-1 viral protein U has contrasting effects on the two distinct paralogs of β-transducin repeat-containing protein (β-TrCP1 and β-TrCP2) and that this interaction has important implications for the regulation of both the canonical and non-canonical NF-κB pathways.

View Article and Find Full Text PDF

Group B Streptococcus (GBS; S. agalactiae) causes chorioamnionitis, neonatal sepsis, and can also cause disease in healthy or immunocompromised adults. GBS possesses a type II-A CRISPR-Cas9 system, which defends against foreign DNA within the bacterial cell.

View Article and Find Full Text PDF

Excess Dietary Sugar Alters Colonocyte Metabolism and Impairs the Proliferative Response to Damage.

Cell Mol Gastroenterol Hepatol

July 2023

Richard King Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania. Electronic address:

Article Synopsis
  • High sugar diets in high-income countries may negatively impact the function of intestinal stem cells (ISCs) and transit-amplifying (TA) cells, which are crucial for maintaining the colonic epithelium and repairing damage.
  • Research using colonoids and a mouse model showed that excess sugar limits the development and proliferation of these cells by reducing the expression of growth-related genes and altering their metabolic pathways.
  • Findings suggest that short-term high-sucrose intake can inhibit the regenerative capabilities of ISCs and TA cells, potentially guiding dietary choices for better recovery from intestinal injuries.
View Article and Find Full Text PDF

Inbred mouse lines vary in their ability to mount protective antiretroviral immune responses, and even closely related strains can exhibit opposing phenotypes upon retroviral infection. Here, we found that 129S mice inherit a previously unknown mechanism for the production of anti-murine leukemia virus (MLV) antibodies and control of infection. The resistant phenotype in 129S1 mice is controlled by two dominant loci that are independent from known MLV resistance genes.

View Article and Find Full Text PDF

Stability and heterogeneity in the anti-microbiota reactivity of human milk-derived Immunoglobulin A.

bioRxiv

March 2023

R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh PA, 15224.

Unlabelled: Immunoglobulin A (IgA) is secreted into breast milk and is critical to both protecting against enteric pathogens and shaping the infant intestinal microbiota. The efficacy of breast milk-derived maternal IgA (BrmIgA) is dependent upon its specificity, however heterogeneity in BrmIgA binding ability to the infant microbiota is not known. Using a flow cytometric array, we analyzed the reactivity of BrmIgA against bacteria common to the infant microbiota and discovered substantial heterogeneity between all donors, independent of preterm or term delivery.

View Article and Find Full Text PDF

Activatable prodrugs have drawn considerable attention for cancer cell ablation owing to their high specificity in drug delivery systems. However, phototheranostic prodrugs with dual organelle-targeting and synergistic effects are still rare due to low intelligence of their structures. Besides, the cell membrane, exocytosis, and diffusional hindrance by the extracellular matrix reduce drug uptake.

View Article and Find Full Text PDF

Intrauterine infection, or chorioamnionitis, due to group B (GBS) is a common cause of miscarriage and preterm birth. To cause chorioamnionitis, GBS must bypass maternal-fetal innate immune defenses including nitric oxide (NO), a microbicidal gas produced by nitric oxide synthases (NOS). This study examined placental NO production and its role in host-pathogen interactions in GBS chorioamnionitis.

View Article and Find Full Text PDF

Group 3 innate lymphoid cells (ILC3s) are crucial for the maintenance of host-microbiota homeostasis in gastrointestinal mucosal tissues. The mechanisms that maintain lineage identity of intestinal ILC3s and ILC3-mediated orchestration of microbiota and mucosal T cell immunity are elusive. Here, we identified BATF as a gatekeeper of ILC3 homeostasis in the gut.

View Article and Find Full Text PDF

The complex immunological role of Helicobacter in modulating cancer.

Trends Immunol

October 2022

University of Pittsburgh, Department of Immunology, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA. Electronic address:

The gut microbiota has recently emerged as a unique mechanism of immunotherapeutic resistance or response within certain cancer patients. Certain adherent bacterial species that reside along the epithelial barrier within the gastrointestinal tract have been shown to be the most immunogenic and include several species within the Helicobacteraceae family. The role of these microbes in cancer remains controversial and varies according to species, immune status, and cancer type.

View Article and Find Full Text PDF

Background: The genetic factors associated with insulin resistance (IR) are not well understood. Clinical studies on first-degree relatives of type 2 diabetic (T2D) patients, which have the highest genetic predisposition to T2D, have given insights into the role of IR in T2D pathogenesis. Induced pluripotent stem cells (iPSCs) are excellent tools for disease modeling as they can retain the genetic imprint of the disease.

View Article and Find Full Text PDF

Evolutionary analyses of genes in Echinodermata offer insights towards the origin of metazoan phyla.

Genomics

July 2022

Department of Biological Sciences, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA; Echinobase #6-46, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, USA.

Despite recent studies discussing the evolutionary impacts of gene duplications and losses among metazoans, the genomic basis for the evolution of phyla remains enigmatic. Here, we employ phylogenomic approaches to search for orthologous genes without known functions among echinoderms, and subsequently use them to guide the identification of their homologs across other metazoans. Our final set of 14 genes was obtained via a suite of homology prediction tools, gene expression data, gene ontology, and generating the Strongylocentrotus purpuratus phylome.

View Article and Find Full Text PDF

See Bonus NeoBriefs videos and downloadable teaching slides Intubated infants in the NICU are at risk of developing ventilator-associated pneumonia (VAP), a common type of health care-associated infection. The Centers for Disease Control and Prevention developed guidelines for diagnosing VAP in patients younger than 1 year, which include worsening gas exchange, radiographic findings, and at least 3 defined clinical signs of pneumonia. VAP in infants is treated with empiric antibiotics selected based on local resistance patterns and individualized patient data.

View Article and Find Full Text PDF

Imaging the stability of chronic electrical microstimulation using electrodes coated with PEDOT/CNT and iridium oxide.

iScience

July 2022

Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA.

Chronic microstimulation is faced with challenges that require an additional understanding of stability and safety. We implanted silicon arrays coated with poly(3,4-ethylenedioxythiophene) (PEDOT)/Carbon Nanotubes (CNT), or PCand IrOx into the cortex of GCaMP6s mice and electrically stimulated them for up to 12 weeks. We quantified neuronal responses to stimulation using two-photon imaging and mesoscale fluorescence microscopy and characterized electrode performance over time.

View Article and Find Full Text PDF

Background: Necrotizing enterocolitis (NEC) is a common, potentially catastrophic intestinal disease among very low birthweight premature infants. Affecting up to 15% of neonates born weighing less than 1500 g, NEC causes sudden-onset, progressive intestinal inflammation and necrosis, which can lead to significant bowel loss, multi-organ injury, or death. No unifying cause of NEC has been identified, nor is there any reliable biomarker that indicates an individual patient's risk of the disease.

View Article and Find Full Text PDF