6 results match your criteria: "Mediterranean Research Centre for Molecular Medicine[Affiliation]"

Characterization of adipocytes derived from fibro/adipogenic progenitors resident in human skeletal muscle.

Cell Death Dis

April 2015

1] UFR Sciences, Université Nice Sophia Antipolis, Nice F-06108, France [2] CNRS, UMR7277, F-06108 Nice, France [3] INSERM U1091, F-06108 Nice, France.

A population of fibro/adipogenic but non-myogenic progenitors located between skeletal muscle fibers was recently discovered. The aim of this study was to determine the extent to which these progenitors differentiate into fully functional adipocytes. The characterization of muscle progenitor-derived adipocytes is a central issue in understanding muscle homeostasis.

View Article and Find Full Text PDF

Hypoxia inhibits Cavin-1 and Cavin-2 expression and down-regulates caveolae in adipocytes.

Endocrinology

March 2015

INSERM Unité 1065 (C.R., K.D., F.P., Y.L.M.-B., J.-F.T., M.C., S.G.-P.), C3M, Mediterranean Research Centre for Molecular Medicine, Team 7 (Cellular and Molecular Physiopathology of Obesity and Diabetes), Unité de Formation et de Recherche (UFR) Medicine (C.R., K.D., F.P., P.P., S.B., Y.L.M.-B., A.T., P.G., J.-F.T., M.C., S.G.-P.), and INSERM Unité 1065 (S.B., A.T., P.G.), C3M, Mediterranean Research Centre for Molecular Medicine, Team 8 (Hepatic Complications in Obesity),University of Nice, Sophia Antipolis F-06204 Nice, France; Centre Commun de Microscopie Appliquée (S.L.-G.), University of Nice, Sophia Antipolis, UFR Sciences, Parc Valrose, F-06108 Nice, France; Unité Mixte de Recherche Centre National de la Recherche Scientifique 7277 (P.P.), Unité Mixte de Recherche INSERM Unité 1091, UFR Medicine, F-06107 Nice, France; Centre Hospitalier Universitaire de Nice, Digestive Center (S.B., A.T.), Nice F-06202, Cedex 3, France; INSERM Unité Mixte de Recherche S872 (I.D.), Centre de Recherche des Cordeliers, Eq8, F-75006 Paris, France; INSERM Unité 1063 (S.L.L.), Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, F-49933 Angers, France; and INSERM Unité Mixte de Recherche 1048 (P.V.), Institut des Maladies Métaboliques et Cardiovasculaires, Université Paul Sabatier, F-31432 Toulouse, France.

During obesity, a hypoxic state develops within the adipose tissue, resulting in insulin resistance. To understand the underlying mechanism, we analyzed the involvement of caveolae because they play a crucial role in the activation of insulin receptors. In the present study, we demonstrate that in 3T3-L1 adipocytes, hypoxia induces the disappearance of caveolae and inhibits the expression of Cavin-1 and Cavin-2, two proteins necessary for the formation of caveolae.

View Article and Find Full Text PDF

REDD1 (Regulated in development and DNA damage response 1) is a hypoxia and stress response gene and is a negative regulator of mTORC1. Since mTORC1 is involved in the negative feedback loop of insulin signaling, we have studied the role of REDD1 on insulin signaling pathway and its regulation by insulin. In human and murine adipocytes, insulin transiently stimulates REDD1 expression through a MEK dependent pathway.

View Article and Find Full Text PDF

REDD1 (regulated in development and DNA damage responses) is essential for the inhibition of mTORC1 (mammalian target of rapamycin complex) signaling pathway in response to hypoxia. REDD1 expression is regulated by many stresses such as hypoxia, oxidative stress, and energy depletion. However, the regulation of REDD1 expression in response to insulin remains unknown.

View Article and Find Full Text PDF

Glucose transporter 4 (GLUT4) is efficiently retained intracellularly. Here, we investigated the insulin-induced reduction of retention. While increasing insulin concentrations led to gradual increases in both the amount of recycling GLUT4 molecules and cell surface GLUT4 levels, the kinetics of the increase in time was independent of insulin concentration.

View Article and Find Full Text PDF

Hypoxia decreases insulin signaling pathways in adipocytes.

Diabetes

January 2009

Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Institut National de la Santé et de la Recherche Médicale U 895, Mediterranean Research Centre for Molecular Medicine, Nice, France.

Objective: Obesity is characterized by an overgrowth of adipose tissue that leads to the formation of hypoxic areas within this tissue. We investigated whether this phenomenon could be responsible for insulin resistance by studying the effect of hypoxia on the insulin signaling pathway in adipocytes.

Research Design And Methods: The hypoxic signaling pathway was modulated in adipocytes from human and murine origins through incubation under hypoxic conditions (1% O(2)) or modulation of hypoxia-inducible factor (HIF) expression.

View Article and Find Full Text PDF