31 results match your criteria: "Mediterranean Institute of Neurobiology (INMED)[Affiliation]"

Epilepsy is one of the most represented neurological diseases worldwide. However, in many cases, the precise molecular mechanisms of epileptogenesis and ictiogenesis are unknown. Because of their important role in synaptic function and neuronal excitability, NMDA receptors are implicated in various epileptogenic mechanisms.

View Article and Find Full Text PDF

The prosocial neuropeptide oxytocin is being developed as a potential treatment for various neuropsychiatric disorders including autism spectrum disorder (ASD). Early studies using intranasal oxytocin in patients with ASD yielded encouraging results and for some time, scientists and affected families placed high hopes on the use of intranasal oxytocin for behavioral therapy in ASD. However, a recent Phase III trial obtained negative results using intranasal oxytocin for the treatment of behavioral symptoms in children with ASD.

View Article and Find Full Text PDF

Oxytocin contributes to the regulation of cytoskeletal and synaptic proteins and could, therefore, affect the mechanisms of neurodevelopmental disorders, including autism. Both the Prader-Willi syndrome and Schaaf-Yang syndrome exhibit autistic symptoms involving the MAGEL2 gene. Magel2-deficient mice show a deficit in social behavior that is rescued following the postnatal administration of oxytocin.

View Article and Find Full Text PDF

The NMDA receptor-mediated Ca signaling during simultaneous pre- and postsynaptic activity is critically involved in synaptic plasticity and thus has a key role in the nervous system. In GRIN2-variant patients alterations of this coincidence detection provoked complex clinical phenotypes, ranging from reduced muscle strength to epileptic seizures and intellectual disability. By using our gene-targeted mouse line (Grin2a), we show that voltage-independent glutamate-gated signaling of GluN2A-containing NMDA receptors is associated with NMDAR-dependent audiogenic seizures due to hyperexcitable midbrain circuits.

View Article and Find Full Text PDF

Enhanced Glutamatergic Currents at Birth in Shank3 KO Mice.

Neural Plast

July 2020

Department of Neurobiology, Mediterranean Institute of Neurobiology (INMED), Aix-Marseille University, INSERM U1249, 13273 Marseille Cedex 09, France.

Autism spectrum disorders (ASD) are neurodevelopmental disorders induced by genetic and environmental factors. In our recent studies, we showed that the GABA developmental shifts during delivery and the second postnatal week are abolished in two rodent models of ASD. Maternal treatment around birth with bumetanide restored the GABA developmental sequence and attenuated the autism pathogenesis in offspring.

View Article and Find Full Text PDF

Early alterations in a mouse model of Rett syndrome: the GABA developmental shift is abolished at birth.

Sci Rep

June 2019

Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.

Genetic mutations of the Methyl-CpG-binding protein-2 (MECP2) gene underlie Rett syndrome (RTT). Developmental processes are often considered to be irrelevant in RTT pathogenesis but neuronal activity at birth has not been recorded. We report that the GABA developmental shift at birth is abolished in CA3 pyramidal neurons of Mecp2 mice and the glutamatergic/GABAergic postsynaptic currents (PSCs) ratio is increased.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores the role of the GRIN2A gene and its GluN2A subunit in NMDARs, revealing its crucial function in brain development and its link to slow-wave sleep disorders within the epilepsy-aphasia spectrum.
  • - Researchers conducted experiments on Grin2a knockout mice to observe social communication through ultrasonic vocalizations and recorded brain electrical activity during sleep stages using EEG, discovering significant deviations in their sleep patterns.
  • - Findings suggest that the changes in vocal communication and sleep-related electrical activity in Grin2a KO mice resemble symptoms seen in children with epilepsy-aphasia spectrum disorders, supporting their use as a model for studying these conditions.
View Article and Find Full Text PDF

The GABA Developmental Shift Is Abolished by Maternal Immune Activation Already at Birth.

Cereb Cortex

August 2019

Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc Scientifique et Technologique de Luminy, MARSEILLE Cedex 09, France.

Epidemiological and experimental studies suggest that maternal immune activation (MIA) leads to developmental brain disorders, but whether the pathogenic mechanism impacts neurons already at birth is not known. We now report that MIA abolishes in mice the oxytocin-mediated delivery γ-aminobutyric acid (GABA) shift from depolarizing to hyperpolarizing in CA3 pyramidal neurons, and this is restored by the NKCC1 chloride importer antagonist bumetanide. Furthermore, MIA hippocampal pyramidal neurons at birth have a more exuberant apical arbor organization and increased apical dendritic length than age-matched controls.

View Article and Find Full Text PDF

Epilepsy is a multifactorial disorder associated with neuronal hyperexcitability that affects more than 1% of the human population. It has long been known that adenosine can reduce seizure generation in animal models of epilepsies. However, in addition to various side effects, the instability of adenosine has precluded its use as an anticonvulsant treatment.

View Article and Find Full Text PDF

The GluA1 subunit of the L-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) plays a crucial, but highly selective, role in cognitive function. Here we analyzed AMPAR expression, AMPAR distribution and spatial learning in mice ( ), expressing the "trafficking compromised" GluA1(Q600R) point mutation. Our analysis revealed somatic accumulation and reduction of GluA1(Q600R) and GluA2, but only slightly reduced CA1 synaptic localization in hippocampi of adult mice.

View Article and Find Full Text PDF

Term or Preterm Cesarean Section Delivery Does Not Lead to Long-term Detrimental Consequences in Mice.

Cereb Cortex

June 2019

Neurochlore, Fundamental Research Department, bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288 Marseille cedex, France.

Epidemiological studies have provided contradictory data on the deleterious sequels of cesarean section (C-section) delivery and their links with developmental brain disorders such as Autism Spectrum Disorders. To gain better insight on these issues, we have now compared physiological, morphological, and behavioral parameters in vaginal, term, and preterm C-section delivered mice. We report that C-section delivery does not lead to long-term behavioral alterations though preterm C-section delivery modifies communicative behaviors in pups.

View Article and Find Full Text PDF

Genetics of human epilepsies: Continuing progress.

Presse Med

March 2018

Mediterranean Institute of Neurobiology (INMED), Inserm U901, parc scientifique de Luminy, BP 13, 13273 Marseille cedex 09, France. Electronic address:

Numerous epilepsy genes have been identified in the last years, mostly in the (rare) monogenic forms and thanks to the increased availability and the decreased cost of next-generation sequencing approaches. Besides the somehow expected group of epilepsy genes encoding various ion channel subunits (e.g.

View Article and Find Full Text PDF

NMDA Receptors as Voltage Sensors.

Methods Mol Biol

June 2018

Mediterranean Institute of Neurobiology (INMED), INSERM U-901, Parc Scientifique de Luminy, BP13, 13273, Marseille Cedex 09, France.

The membrane potential is an essential parameter of a living cell. However, measurements of the membrane potential using conventional techniques are associated with a number of artifacts. Cell-attached recordings of the currents through NMDA receptor channels enable noninvasive measurements of the neuronal membrane potential.

View Article and Find Full Text PDF

Analysis of electrophysiological properties of NMDARs and NMDAR-mediated synaptic transmission in identified neurons and synapses in brain slices is a major step in understanding their function in normal and pathological neuronal brain networks. In many central synapses excitatory postsynaptic currents (EPSCs) are mediated by excitatory neurotransmitter glutamate that activates colocalized AMPAR and NMDAR generating a complex EPSC. Here, we describe the methods commonly used in brain slices to study the electrophysiological properties of NMDAR-mediated component of spontaneous or evoked EPSCs by extracellular stimulation or by stimulating synaptically connected neurons.

View Article and Find Full Text PDF

Magnetofection™ of NMDA Receptor Subunits GluN1 and GluN2A Expression Vectors in Non-Neuronal Host Cells.

Methods Mol Biol

June 2018

INSERM U901, Mediterranean Institute of Neurobiology (INMED), Aix-Marseille University, Marseille, France.

The functional study of reconstituted NMDA receptors (NMDARs) in host cells requires that the corresponding vectors for the expression of the NMDAR subunits are co-transfected with high efficiency. Magnetofection™ is a technology used to deliver nucleic acids to cells. It is driven and site-specifically guided by the attractive forces of magnetic fields acting on magnetic nanoparticles that are associated with nucleic acid vectors.

View Article and Find Full Text PDF

Quantification of NMDAR Subunit Genes Expression by qRT-PCR.

Methods Mol Biol

June 2018

Molecular and Cellular Biology Platform, INSERM U901, Mediterranean Institute of Neurobiology (INMED), Aix-Marseille University, Marseille, France.

Transcription is the initial and generally the most sensitive step to cellular needs and environmental cues. Thus, it serves as a major mechanism controlling gene expression. Using reverse-transcription quantitative polymerase chain reaction technology (RT-qPCR), we will present how to quantify the transcriptional expression of NMDARs subunits during brain development and in both healthy and pathological conditions.

View Article and Find Full Text PDF

Background: Congenital cytomegalovirus infections are a leading cause of neurodevelopmental disorders in human and represent a major health care and socio-economical burden. In contrast with this medical importance, the pathophysiological events remain poorly known. Murine models of brain cytomegalovirus infection, mostly neonatal, have brought recent insights into the possible pathogenesis, with convergent evidence for the alteration and possible involvement of brain immune cells.

View Article and Find Full Text PDF

Idiopathic focal epilepsies: the "lost tribe".

Epileptic Disord

September 2016

GSTT, Clin Neurophysiology and Epilepsies, Lambeth Wing, St Thomas' Hospital, London, UK.

The term idiopathic focal epilepsies of childhood (IFE) is not formally recognised by the ILAE in its 2010 revision (Berg et al., 2010), nor are its members and boundaries precisely delineated. The IFEs are amongst the most commonly encountered epilepsy syndromes affecting children.

View Article and Find Full Text PDF

Genetic generalized epilepsy (GGE), formerly known as idiopathic generalized epilepsy, is the most common form of epilepsy and is thought to have predominant genetic etiology. GGE are clinically characterized by absence, myoclonic, or generalized tonic-clonic seizures with electroencephalographic pattern of bilateral, synchronous, and symmetrical spike-and-wave discharges. Despite their strong heritability, the genetic basis of generalized epilepsies remains largely elusive.

View Article and Find Full Text PDF

The coordination of dynamic neural activity within and between neural networks is believed to underlie normal cognitive processes. Conversely, cognitive deficits that occur following neurological insults may result from network discoordination. We hypothesized that cognitive outcome following febrile status epilepticus (FSE) depends on network efficacy within and between fields CA1 and CA3 to dynamically organize cell activity by theta phase.

View Article and Find Full Text PDF

The effects of general anesthetics ketamine and midazolam, the drugs that cause neuroapoptosis at the early stages of CNS development, on electrical activity of the somatosensory cortex in newborn rats were studied using extracellular recording of local field potentials and action potentials of cortical neurons. Combined administration of ketamine (40 mg/kg) and midazolam (9 mg/kg) induced surgical coma and almost completely suppressed early oscillatory patterns and neuronal firing. These effects persisted over 3 h after injection of the anesthetics.

View Article and Find Full Text PDF

Paradoxical Benzodiazepine Response: A Rationale for Bumetanide in Neurodevelopmental Disorders?

Pediatrics

August 2015

Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Netherlands.

The diuretic agent bumetanide has recently been put forward as a novel, promising treatment of behavioral symptoms in autism spectrum disorder (ASD) and related conditions. Bumetanide can decrease neuronal chloride concentrations and may thereby reinstate γ-aminobutyric acid (GABA)-ergic inhibition in patients with neurodevelopmental disorders. However, strategies to select appropriate candidates for bumetanide treatment are lacking.

View Article and Find Full Text PDF

Activity-dependent plasticity of mouse hippocampal assemblies in vitro.

Front Neural Circuits

February 2016

Institute of Physiology and Pathophysiology, University of Heidelberg Heidelberg, Germany ; Mediterranean Institute of Neurobiology (INMED), INSERM Marseille, France.

Memory formation is associated with the generation of transiently stable neuronal assemblies. In hippocampal networks, such groups of functionally coupled neurons express highly ordered spatiotemporal activity patterns which are coordinated by local network oscillations. One of these patterns, sharp wave-ripple complexes (SPW-R), repetitively activates previously established groups of memory-encoding neurons, thereby supporting memory consolidation.

View Article and Find Full Text PDF

NMDA receptor subunit mutations in neurodevelopmental disorders.

Curr Opin Pharmacol

February 2015

INSERM UMR_S901, Marseille, France; Mediterranean Institute of Neurobiology (INMED), Marseille, France; Aix-Marseille University, Marseille, France; French Epilepsy, Language and Development (EPILAND) Network, France. Electronic address:

N-Methyl-D-aspartate receptors (NMDARs) are glutamate-gated cation channels that are expressed throughout the brain and play essential role in brain functioning. Diversity of the subunits and of their spatio-temporal expression imparts distinct functional properties for the particular NMDAR in a particular brain region and developmental stage. Mutations in NMDARs may have pathological consequences and actually lead to various neurological disorders.

View Article and Find Full Text PDF