4 results match your criteria: "Medical University of South Carolina and Hollings Marine Laboratory[Affiliation]"

Nitrate induces a type 1 diabetic profile in alligator hatchlings.

Ecotoxicol Environ Saf

January 2018

Department of Biology, University of Florida, Gainesville, FL, USA; Marine Biomedicine & Environmental Sciences, Medical University of South Carolina and Hollings Marine Laboratory, Charleston, SC, USA.

Type 1 diabetes (T1D) is a chronic autoimmune disease that affects 1 in 300 children by age 18. T1D is caused by inflammation-induced loss of insulin-producing pancreatic beta cells, leading to high blood glucose and a host of downstream complications. Although multiple genes are associated with T1D risk, only 5% of genetically susceptible individuals actually develop clinical disease.

View Article and Find Full Text PDF

Incubation temperatures experienced by developing embryos exert powerful influences over gonadal sex determination and differentiation in many species. However, the molecular mechanisms controlling these impacts remain largely unknown. We utilize the American alligator to investigate the sensitivity of the reproductive system to thermal signals experienced during development and ask specifically whether individuals of the same sex, yet derived from different incubation temperatures display persistent variation in the expression patterns of sex biased transcripts and plasma sex hormones.

View Article and Find Full Text PDF

Identification and Characterization of the Androgen Receptor From the American Alligator, Alligator mississippiensis.

Endocrinology

August 2015

Okazaki Institute for Integrative Bioscience (S.M., R.Y., Y.Og., T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan; Department of Obstetrics and Gynecology (S.K., B.M.D., L.J.G.), Medical University of South Carolina and Hollings Marine Laboratory, Charleston, South Carolina 29412; Department of Life Environmental Conservation (H.I.), Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan; Department of Biological Sciences (Y.K.), Hokkaido University, Sapporo 060-0810, Japan; and Department of Veterinary Medicine (Y.Oh.), Faculty of Agriculture, Tottori University, Tottori, Tottori 680-8553, Japan.

Androgens are essential for the development, reproduction, and health throughout the life span of vertebrates, particularly during the initiation and maintenance of male sexual characteristics. Androgen signaling is mediated by the androgen receptor (AR), a member of the steroid nuclear receptor superfamily. Mounting evidence suggests that environmental factors, such as exogenous hormones or contaminants that mimic hormones, can disrupt endocrine signaling and function.

View Article and Find Full Text PDF