964 results match your criteria: "Max-Planck-Institute of Immunobiology[Affiliation]"

Genetic conflicts shape the genomes of prokaryotic and eukaryotic organisms. Here, we argue that some of the key evolutionary novelties of adaptive immune systems of vertebrates are descendants of prokaryotic toxin-antitoxin (TA) systems. Cytidine deaminases and RAG recombinase have evolved from genotoxic enzymes to programmable editors of host genomes, supporting the astounding discriminatory capability of variable lymphocyte receptors of jawless vertebrates, as well as immunoglobulins and T cell receptors of jawed vertebrates.

View Article and Find Full Text PDF

Dominant mutations in tyrosyl-tRNA synthetase (YARS1) and six other tRNA ligases cause Charcot-Marie-Tooth peripheral neuropathy (CMT). Loss of aminoacylation is not required for their pathogenicity, suggesting a gain-of-function disease mechanism. By an unbiased genetic screen in Drosophila, we link YARS1 dysfunction to actin cytoskeleton organization.

View Article and Find Full Text PDF

Temporal Notch signaling regulates mucociliary cell fates through Hes-mediated competitive de-repression.

bioRxiv

February 2023

Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany.

Tissue functions are determined by the types and ratios of cells present, but little is known about self-organizing principles establishing correct cell type compositions. Mucociliary airway clearance relies on the correct balance between secretory and ciliated cells, which is regulated by Notch signaling across mucociliary systems. Using the airway-like epidermis, we investigate how cell fates depend on signaling, how signaling levels are controlled, and how Hes transcription factors regulate cell fates.

View Article and Find Full Text PDF

Community-developed checklists for publishing images and image analyses.

ArXiv

September 2023

NCT-UCC, Medizinische Fakultät TU Dresden, Fetscherstrasse 105, 01307 Dresden/Germany.

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However for scientists wishing to publish the obtained images and image analyses results, there are to date no unified guidelines.

View Article and Find Full Text PDF

Metabolism plays a fundamental role in regulating cellular functions and fate decisions. Liquid chromatography-mass spectrometry (LC-MS)-based targeted metabolomic approaches provide high-resolution insights into the metabolic state of a cell. However, the typical sample size is in the order of 10-10 cells and thus not compatible with rare cell populations, especially in the case of a prior flow cytometry-based purification step.

View Article and Find Full Text PDF

Blocking pyrimidine de novo synthesis by inhibiting dihydroorotate dehydrogenase is used to treat autoimmunity and prevent expansion of rapidly dividing cell populations including activated T cells. Here we show memory T cell precursors are resistant to pyrimidine starvation. Although the treatment effectively blocked effector T cells, the number, function and transcriptional profile of memory T cells and their precursors were unaffected.

View Article and Find Full Text PDF

Epithelial tissues provide front-line barriers shielding the organism from invading pathogens and harmful substances. In the airway epithelium, the combined action of multiciliated and secretory cells sustains the mucociliary escalator required for clearance of microbes and particles from the airways. Defects in components of mucociliary clearance or barrier integrity are associated with recurring infections and chronic inflammation.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores how changes in the lipid composition of CD8 effector T cells influence their differentiation and signaling, specifically focusing on different types of phosphoinositides (PIP).
  • - Naive T cells predominantly contain polyunsaturated PIP, which supports immediate signaling after T cell activation, while late T cells rely on saturated PIP for ongoing signaling due to decreased activity of the enzyme phospholipase C-γ1.
  • - The research found that glucose is crucial for the production of saturated PIP, suggesting that different lipid profiles with distinct fatty acid compositions are critical for the successful functioning of T cells during their differentiation process.
View Article and Find Full Text PDF

Analyzing trogocytosis of T lymphocytes by flow cytometry and confocal microscopy.

STAR Protoc

March 2023

Institute of Immunodeficiency, Medical Center and Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany. Electronic address:

Here, we present a protocol to examine the mechanisms underlying the intercellular transfer of transmembrane molecules, termed trogocytosis, and the fate of transferred molecules. We describe the steps needed from T lymphocyte isolation, via co-culture with cells expressing the ligand of interest, to cell harvest and subsequent staining for flow cytometry and confocal microscopy. Furthermore, we showcase critical parameters and pitfalls, which allow easy adaptation of the protocol to investigate trogocytosis of various cell surface receptors in different cell types.

View Article and Find Full Text PDF

Multimodal epigenetic changes and altered NEUROD1 chromatin binding in the mouse hippocampus underlie FOXG1 syndrome.

Proc Natl Acad Sci U S A

January 2023

Department Molecular Embryology, Institute for Anatomy and Cell Biology, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany.

Forkhead box G1 (FOXG1) has important functions in neuronal differentiation and balances excitatory/inhibitory network activity. Thus far, molecular processes underlying FOXG1 function are largely unexplored. Here, we present a multiomics data set exploring how FOXG1 impacts neuronal maturation at the chromatin level in the mouse hippocampus.

View Article and Find Full Text PDF
Article Synopsis
  • Plasma cells are crucial for immune function, but how they survive and secrete antibodies is not fully understood.
  • Researchers found that the protein Sec22b is vital for maintaining plasma cell function; without it, plasma cells are barely present and antibodies are significantly lower.
  • Sec22b helps in effective antibody secretion and maintains plasma cell health by regulating their gene activity and the structure of the endoplasmic reticulum and mitochondria.
View Article and Find Full Text PDF

The transcription factor ELF5 is essential for early preimplantation development.

Mol Biol Rep

March 2023

Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Balçova, 35340, İzmir, Türkiye.

Background: During early embryonic development, the cell adhesion molecule E-cadherin encoded by the Cdh1 gene plays a vital role in providing proper cell-cell adhesion, ensuring an undifferentiated state critical for maintaining the pluripotency for the development of the preimplantation embryo. The transcriptional regulation of Cdh1 gained attention recently but is not yet fully understood. In a previous study, our team established a correlation between Elf3 and Cdh1 expression and showed its importance in the regulation of MET.

View Article and Find Full Text PDF

The zinc finger transcription factor Ikaros1 (Ikzf1) is required for lymphoid development in mammals. Four zinc fingers constitute its DNA binding domain and two zinc fingers are present in the C-terminal protein interaction module. We describe the phenotypes of zebrafish homozygous for two distinct mutant ikzf1 alleles.

View Article and Find Full Text PDF

G-protein coupled receptor kinases (GRKs) participate in the regulation of chemokine receptors by mediating receptor desensitization. They can be recruited to agonist-activated G-protein coupled receptors (GPCRs) and phosphorylate their intracellular parts, which eventually blocks signal propagation and often induces receptor internalization. However, there is growing evidence that GRKs can also control cellular functions beyond GPCR regulation.

View Article and Find Full Text PDF

Adult hematopoietic stem and progenitor cells (HSPCs) respond directly to inflammation and infection, causing both acute and persistent changes to quiescence, mobilization, and differentiation. Here we show that murine fetal HSPCs respond to prenatal inflammation in utero and that the fetal response shapes postnatal hematopoiesis and immune cell function. Heterogeneous fetal HSPCs show divergent responses to maternal immune activation (MIA), including changes in quiescence, expansion, and lineage-biased output.

View Article and Find Full Text PDF

The establishment of de novo chromatin accessibility in lymphoid progenitors requires the "pioneering" function of transcription factor (TF) early B cell factor 1 (EBF1), which binds to naïve chromatin and induces accessibility by recruiting the BRG1 chromatin remodeler subunit. However, it remains unclear whether the function of EBF1 is continuously required for stabilizing local chromatin accessibility. To this end, we replaced EBF1 by EBF1-FKBP in pro-B cells, allowing the rapid degradation by adding the degradation TAG13 (dTAG13) dimerizer.

View Article and Find Full Text PDF

Marginal zone (MZ) B cells represent innate-like B cells that mediate a fast immune response. The adhesion of MZ B cells to the marginal sinus of the spleen is governed by integrins. Here, we address the question of whether β1-integrin has additional functions by analyzing Itgb1fl/flCD21Cre mice in which the β1-integrin gene is deleted in mature B cells.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) has substantially improved the prognosis of patients with cancer, but the majority experiences limited benefit, supporting the need for new therapeutic approaches. Up-regulation of sialic acid-containing glycans, termed hypersialylation, is a common feature of cancer-associated glycosylation, driving disease progression and immune escape through the engagement of Siglec receptors on tumor-infiltrating immune cells. Here, we show that tumor sialylation correlates with distinct immune states and reduced survival in human cancers.

View Article and Find Full Text PDF

Upon progesterone stimulation, Endometrial Stromal Cells (EnSCs) undergo a differentiation program into secretory cells (decidualization) to release in abundance factors crucial for embryo implantation. We previously demonstrated that decidualization requires massive reshaping of the secretory pathway and, in particular, of the Golgi complex. To decipher the underlying mechanisms, we performed a time-course transcriptomic analysis of decidualizing EnSC.

View Article and Find Full Text PDF

Intercellular communication is crucial for collective regulation of cellular behaviors. While clustering T cells have been shown to mutually control the production of key communication signals, it is unclear whether they also jointly regulate their availability and degradation. Here we use newly developed reporter systems, bioinformatic analyses, protein structure modeling and genetic perturbations to assess this.

View Article and Find Full Text PDF

Cell-type-specific gene regulatory programs are essential for cell differentiation and function. In animal neurons, the highly conserved ELAV/Hu family of proteins promotes alternative splicing and polyadenylation of mRNA precursors to create unique neuronal transcript isoforms. Here, we assess transcriptome profiles and neurogenesis success in Drosophila models engineered to express differing levels of ELAV activity in the course of development.

View Article and Find Full Text PDF

Coronavirus Disease 2019 (COVID-19) has been the most severe public health challenge in this century. Two years after its emergence, the rapid development and deployment of effective COVID-19 vaccines have successfully controlled this pandemic and greatly reduced the risk of severe illness and death associated with COVID-19. However, due to its ability to rapidly evolve, the SARS-CoV-2 virus may never be eradicated, and there are many important new topics to work on if we need to live with this virus for a long time.

View Article and Find Full Text PDF

Metabolomics: Going Deeper, Going Broader, Going Further.

Methods Mol Biol

October 2022

Metabolomics Core Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.

Metabolomics is a continuously dynamic field of research that is driven by demanding research questions and technological advances alike. In this review we highlight selected recent and ongoing developments in the area of mass spectrometry-based metabolomics. The field of view that can be seen through the metabolomics lens can be broadened by adoption of separation techniques such as hydrophilic interaction chromatography and ion mobility mass spectrometry (going broader).

View Article and Find Full Text PDF