92 results match your criteria: "Max-Planck-Institute for Nuclear Physics[Affiliation]"

Calculations of the two-loop electron self-energy for the 1S Lamb shift are reported, performed to all orders in the nuclear binding strength parameter Zα (where Z is the nuclear charge number and α is the fine structure constant). Our approach allows calculations to be extended to nuclear charges lower than previously possible and improves the numerical accuracy by more than an order of magnitude. Extrapolation of our all-order results to hydrogen yields a result twice as precise as the previously accepted value [E.

View Article and Find Full Text PDF

Microquasars are laboratories for the study of jets of relativistic particles produced by accretion onto a spinning black hole. Microquasars are near enough to allow detailed imaging of spatial features across the multiwavelength spectrum. The recent extension measurement of the spatial morphology of a microquasar, SS 433, to TeV gamma rays localizes the acceleration of electrons at shocks in the jet far from the black hole.

View Article and Find Full Text PDF

Here we present measurements of dissociative and non-dissociative cross-sections for the electron impact of the CF4 molecule. The present experiments are based on a Recoil Ion Momentum Spectrometer (RIMS), a standard gas mixing setup for CF4, and a reference gas. The measurements were carried out at several electron energies up to 1 keV, covering the energy range of previous experiments.

View Article and Find Full Text PDF

For photo-dissociation of a single hydrogen molecule ( ) with combined XUV and IR laser pulses, we demonstrate optical control of the emission direction of the photoelectron with respect to the outgoing neutral fragment (the H-atom). Depending on the relative delay between the two laser fields, adjustable with sub-femtosecond time resolution, the photoelectron is emitted into the same hemisphere as the H-atom or opposite. This emission asymmetry is a result of entanglement of the two-electron final-state involving the spatially separated bound and emitted electron.

View Article and Find Full Text PDF

Purpose: To demonstrate the feasibility of 3D echo-planar spectroscopic imaging (EPSI) technique with rapid volumetric radial k-space sampling for hyperpolarized (HP) C magnetic resonance spectroscopic imaging (MRSI) in vivo.

Methods: A radial EPSI (rEPSI) was implemented on a 3 T clinical PET/MR system. To enable volumetric coverage, the sinusoidal shaped readout gradients per k-t-spoke were rotated along the three spatial dimensions in a golden-angle like manner.

View Article and Find Full Text PDF

Many powerful tests of the standard model of particle physics and searches for new physics with precision atomic spectroscopy are hindered by our lack of knowledge of nuclear properties. Ideally, these properties may be derived from precise measurements of the most sensitive and theoretically best-understood observables, often found in hydrogen-like systems. Although these measurements are abundant for the electric properties of nuclei, they are scarce for the magnetic properties, and precise experimental results are limited to the lightest of nuclei.

View Article and Find Full Text PDF

We present a novel technique to probe electroweak nuclear properties by measuring parity violation (PV) in single molecular ions in a Penning trap. The trap's strong magnetic field Zeeman shifts opposite-parity rotational and hyperfine molecular states into near degeneracy. The weak interaction-induced mixing between these degenerate states can be larger than in atoms by more than 12 orders of magnitude, thereby vastly amplifying PV effects.

View Article and Find Full Text PDF

Photoionization can initiate structural reorganization of molecular matter and drive formation of new chemical bonds. Here, we used time-resolved extreme ultraviolet (EUV) pump - EUV probe Coulomb explosion imaging of carbon dioxide dimer ion dynamics, that combined with ab initio molecular dynamics simulations, revealed unexpected asymmetric structural rearrangement. We show that ionization by the pump pulse induces rearrangement from the slipped-parallel (C) geometry of the neutral dimer towards a T-shaped (C) structure on the ~100 fs timescale, although the most stable slipped-parallel (C) structure of the ionic dimer.

View Article and Find Full Text PDF

Interatomic Coulombic decay (ICD) plays a crucial role in weakly bound complexes exposed to intense or high-energy radiation. So far, neutral or ionic atoms or molecules have been prepared in singly excited electron or hole states that can transfer energy to neighboring centers and cause ionization and radiation damage. Here we demonstrate that a doubly excited atom, despite its extremely short lifetime, can decay by ICD; evidenced by high-resolution photoelectron spectra of He nanodroplets excited to the 2s2p+ state.

View Article and Find Full Text PDF

Liquid crystals have found a wide area of application over the last few decades, proving to be excellent materials for tunable optics from visible to near-infrared frequencies. Currently, much effort is devoted to demonstrating their applicability at THz frequencies (1-10 THz), where tremendous advances of broadband and intense sources have been achieved. Yet, a detailed understanding of THz-triggered dynamics in liquid crystals is incomplete.

View Article and Find Full Text PDF

We sympathetically cool highly charged ions (HCI) in Coulomb crystals of Doppler-cooled Be+ ions confined in a cryogenic linear Paul trap that is integrated into a fully enclosing radio-frequency resonator manufactured from superconducting niobium. By preparing a single Be+ cooling ion and a single HCI, quantum logic spectroscopy toward frequency metrology and qubit operations with a great variety of species are enabled. While cooling down the assembly through its transition temperature into the superconducting state, an applied quantization magnetic field becomes persistent, and the trap becomes shielded from subsequent external electromagnetic fluctuations.

View Article and Find Full Text PDF
Article Synopsis
  • High-precision atomic structure calculations often struggle with the complexity of electronic correlations and the size of configuration interaction (CI) problems.
  • A new deep-learning method has been developed to efficiently select the most relevant configurations from large CI sets, allowing for accurate energy calculations without the need for extensive computational resources.
  • The approach utilizes a convolutional neural network to manage smaller CI computations effectively, demonstrating success on both moderate and prohibitively large basis sets where traditional methods fail.
View Article and Find Full Text PDF

Resonant oscillators with stable frequencies and large quality factors help us to keep track of time with high precision. Examples range from quartz crystal oscillators in wristwatches to atomic oscillators in atomic clocks, which are, at present, our most precise time measurement devices. The search for more stable and convenient reference oscillators is continuing.

View Article and Find Full Text PDF

Discovery of Gamma Rays from the Quiescent Sun with HAWC.

Phys Rev Lett

August 2023

William H. Miller III Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA.

We report the first detection of a TeV γ-ray flux from the solar disk (6.3σ), based on 6.1 years of data from the High Altitude Water Cherenkov (HAWC) observatory.

View Article and Find Full Text PDF

Electron Scattering from 1-Methyl-5-Nitroimidazole: Cross-Sections for Modeling Electron Transport through Potential Radiosensitizers.

Int J Mol Sci

July 2023

Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas-CSIC, Serrano 113-bis, 28006 Madrid, Spain.

Article Synopsis
  • * Total electron scattering cross-sections were established using previous measurements and calculated using different methods depending on the energy range, including the Schwinger multichannel method for low energies and IAM-SCARI for higher energies.
  • * Additional measurements included ionization cross-sections and fragmentation data using advanced spectrometers, allowing for a detailed understanding of electron-induced radiation damage, although further biological testing is needed to confirm its radiosens
View Article and Find Full Text PDF

Upon ionization, water forms a highly acidic radical cation HO that undergoes ultrafast proton transfer (PT)-a pivotal step in water radiation chemistry, initiating the production of reactive HO, OH radicals, and a (hydrated) electron. Until recently, the time scales, mechanisms, and state-dependent reactivity of ultrafast PT could not be directly traced. Here, we investigate PT in water dimers using time-resolved ion coincidence spectroscopy applying a free-electron laser.

View Article and Find Full Text PDF

The implementation of attosecond photoelectron-photoion coincidence spectroscopy for the investigation of atomic and molecular dynamics calls for a high-repetition-rate driving source combined with experimental setups characterized by excellent stability for data acquisition over time intervals ranging from a few hours up to a few days. This requirement is crucial for the investigation of processes characterized by low cross sections and for the characterization of fully differential photoelectron(s) and photoion(s) angular and energy distributions. We demonstrate that the implementation of industrial-grade lasers, combined with a careful design of the delay line implemented in the pump-probe setup, allows one to reach ultrastable experimental conditions leading to an error in the estimation of the time delays of only 12 as over an acquisition time of 6.

View Article and Find Full Text PDF

We demonstrate the capability of flying focus (FF) laser pulses with ℓ=1 orbital angular momentum (OAM) to transversely confine ultrarelativistic charged particle bunches over macroscopic distances while maintaining a tight bunch radius. A FF pulse with ℓ=1 OAM creates a radial ponderomotive barrier that constrains the transverse motion of particles and travels with the bunch over extended distances. As compared with freely propagating bunches, which quickly diverge due to their initial momentum spread, the particles cotraveling with the ponderomotive barrier slowly oscillate around the laser pulse axis within the spot size of the pulse.

View Article and Find Full Text PDF

The indirect effect of radiation plays an important role in radio-induced biological damages. Monte Carlo codes have been widely used in recent years to study the chemical evolution of particle tracks. However, due to the large computational efforts required, their applicability is typically limited to simulations in pure water targets and to temporal scales up to the µs.

View Article and Find Full Text PDF

A tera-electron volt afterglow from a narrow jet in an extremely bright gamma-ray burst.

Science

June 2023

Key Laboratory of Particle Astrophysics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China.

Some gamma-ray bursts (GRBs) have a tera-electron volt (TeV) afterglow, but the early onset of this has not been observed. We report observations with the Large High Altitude Air Shower Observatory (LHAASO) of the bright GRB 221009A, which serendipitously occurred within the instrument's field of view. More than 64,000 photons >0.

View Article and Find Full Text PDF

Imaging the Photodissociation Dynamics and Fragment Alignment of CHBrI at 193 nm.

J Phys Chem A

November 2022

Departamento de Química Física (Unidad Asociada I+D+i al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040Madrid, Spain.

The photodissociation dynamics and photofragment alignment of bromoiodomethane (CHBrI) have been studied at 193 nm using a double experimental and theoretical approach. In addition, the ultraviolet (UV)-vacuum ultraviolet (VUV) absorption spectrum of gas phase CHBrI has been measured in the photon energy range of 5-11 eV using the VUV Fourier transform spectrometer (FTS) at the VUV beamline DESIRS of the synchrotron SOLEIL facility. The slice imaging technique in combination with resonance enhanced multiphoton ionization (REMPI) detection of the Br() and I() (with = 3/2 and 1/2 for Br/I and Br*/I*, respectively) atomic photofragments have been used to produce experimental translational energy and angular distributions, which were analyzed to deliver, on one hand, the partitioning of the available energy among the different degrees-of-freedom of the photofragments and, on the other, the photofragment polarization in terms of () alignment parameters.

View Article and Find Full Text PDF

Helium-3 has nowadays become one of the most important candidates for studies in fundamental physics, nuclear and atomic structure, magnetometry and metrology, as well as chemistry and medicine. In particular, He nuclear magnetic resonance (NMR) probes have been proposed as a new standard for absolute magnetometry. This requires a high-accuracy value for the He nuclear magnetic moment, which, however, has so far been determined only indirectly and with a relative precision of 12 parts per billon.

View Article and Find Full Text PDF

White light interferometry is a well established technique with diverse precision applications, however, the conventional interferometers such as Michelson, Mach-Zehnder or Linnik are large in size, demand tedious alignment for obtaining white light fringes, require noise-isolation techniques to achieve sub-nanometric stability and importantly, exhibit unbalanced dispersion causing uncertainty in absolute zero delay reference. Here, we demonstrate an ultrathin white light interferometer enabling picometer resolution by exploiting the wavefront division of a broadband incoherent light beam after transmission through a pair of micrometer thin identical glass plates. Spatial overlap between the two diffracted split wavefronts readily produce high-contrast and stable white light fringes, with unambiguous reference to absolute zero path-delay position.

View Article and Find Full Text PDF

We demonstrate a dispersion-free wavefront splitting attosecond resolved interferometric delay line for easy ultrafast metrology of broadband femtosecond pulses. Using a pair of knife-edge prisms, we symmetrically split and later recombine the two wavefronts with a few tens of attosecond resolution and stability and employ a single-pixel analysis of interference fringes with good contrast using a phone camera without any iris or nonlinear detector. Our all-reflective delay line is theoretically analyzed and experimentally validated by measuring 1st and 2nd order autocorrelations and the SHG-FROG trace of a NIR femtosecond pulse.

View Article and Find Full Text PDF