275 results match your criteria: "Max-Planck-Institute for Immunobiology[Affiliation]"

The early systemic production of interferon (IFN)-alphabeta is an essential component of the antiviral host defense mechanisms, but is also thought to contribute to the toxic side effects accompanying gene therapy with adenoviral vectors. Here we investigated the IFN-alphabeta response to human adenoviruses (Ads) in mice. By comparing the responses of normal, myeloid (m)DC- and plasmacytoid (p)DC-depleted mice and by measuring IFN-alphabeta mRNA expression in different organs and cells types, we show that in vivo, Ads elicit strong and rapid IFN-alphabeta production, almost exclusively in splenic mDCs.

View Article and Find Full Text PDF

Bruton's tyrosine kinase (Btk) represents an important signaling element downstream of ITAM-containing receptors, e.g. FcepsilonR1 and BCR.

View Article and Find Full Text PDF

Despite the important role of B lymphocytes as a bridge between the innate and the adaptive immune system, little is known regarding lipopolysaccharide (LPS) recognition, activation of signalling networks or conceivable cooperation between LPS and the B-cell antigen receptor (BCR). Here, we show that primary B cells can efficiently discriminate between different LPS chemotypes, responding with at least 100-fold higher sensitivity to rough-form LPS compared with smooth-form LPS. Using genetically modified mice, we demonstrate that B lymphocytes recognize all LPS chemotypes via Toll-like receptor 4 (TLR4).

View Article and Find Full Text PDF

Thymic medullary epithelial cells (mTECs) play a major role in central tolerance induction by expressing tissue-specific Ags (TSAs). The expression of a subset of TSAs in mTECs is under the control of Aire (autoimmune regulator). Humans defective for AIRE develop a syndrome characterized by autoimmune disease in several endocrine glands.

View Article and Find Full Text PDF

Although the essential role of the adaptor protein SLP-65 in pre-B cell differentiation is established, the molecular mechanism underlying its function is poorly understood. In this study, we uncover a link between SLP-65-dependent signaling and the phosphoinositide-3-OH kinase (PI(3)K)-protein kinase B (PKB)-Foxo pathway. We show that the forkhead box transcription factor Foxo3a promotes light chain rearrangement in pre-B cells.

View Article and Find Full Text PDF

In this review, we summarize our investigations concerning the differential importance of CD14 and LBP in toll-like receptor 4 (TLR4)/myeloid differentiation protein-2 (MD-2)-mediated signaling by smooth and rough-form lipopolysaccharide (LPS) chemotypes and include the results obtained in studies with murine and human TLR4-transgenic mice. Furthermore, we present more recent data on the mechanisms involved in the induction of LPS hypersensitivity by bacterial and viral infections and on the reactivity of the hypersensitive host to non-LPS microbial ligands and endogenous mediators. Finally, the effects of pre-existing hypersensitivity on the course and outcome of a super-infection with Salmonella typhimurium or Listeria monocytogenes are summarized.

View Article and Find Full Text PDF

Upon B-cell antigen receptor (BCR) activation, the protein tyrosine kinase Syk phosphorylates the adaptor protein SH2 domain-containing leukocyte protein of 65 kDa (SLP-65), thus coupling the BCR to diverse signalling pathways. Here, we report that SLP-65 is not only a downstream target and substrate of Syk but also a direct binding-partner and activator of this kinase. This positive feedback is mediated by the binding of the SH2 domain of SLP-65 to an autophosphorylated tyrosine of Syk.

View Article and Find Full Text PDF

The linker histone H1 binds to the DNA entering and exiting the nucleosomal core particle and has an important role in establishing and maintaining higher order chromatin structures. H1 forms a complex family of related proteins with distinct species, tissue and developmental specificity. In higher eukaryotes all H1 variants have the same general structure, consisting of a central conserved globular domain and less conserved N-terminal and C-terminal tails.

View Article and Find Full Text PDF

The T cell antigen receptor (TCR-CD3) is the most complex receptor known to date, consisting of eight transmembrane subunits. Its activation by an antigen is the initial step in an immune response. Here, we present the permissive geometry model explaining how antigen binding initiates intracellular signalling cascades.

View Article and Find Full Text PDF

The POU domain transcription factor Oct4 plays essential functions in the maintenance of pluripotent embryonic and germ cells of mammals. Molecular mechanisms of Oct4 action remain poorly understood. To isolate modulators of Oct4 activity, we performed a yeast two-hybrid screen with the Oct4 POU domain as a bait and isolated PIASy as an Oct4-interacting protein.

View Article and Find Full Text PDF

The trophectoderm (TE) of blastocysts, the first epithelium established in mammalian development, (1) plays signaling, supportive, and patterning functions during preimplantation development, (2) ensures embryo implantation into the uterine wall, and (3) gives rise to extraembryonic tissues essential for embryo patterning and growth after implantation. We show that mouse TE, itself permissive to lentiviral (LV) infection, represents a robust nonpermeable physical barrier to the virus particles, thereby shielding the cells of the inner cell mass from viral infection. This LV feature will allow modulations of gene expression in a lineage-specific manner, thus having significant applications in mouse functional genetics.

View Article and Find Full Text PDF

Signals from the B cell antigen receptor (BCR), consisting of mu heavy chain (muHC) and conventional light chain (LC), and its precursor the pre-BCR, consisting of muHC and surrogate light chain (SLC), via the adaptor protein SLP-65 regulate the development and function of B cells. Here, we compare the effect of SLC and conventional LC expression on receptor-induced Ca(2+) flux in B cells expressing an inducible form of SLP-65. We found that SLC expression strongly enhanced an autonomous ability of muHC to induce Ca(2+) flux irrespective of additional receptor crosslinking.

View Article and Find Full Text PDF

SLP-65 and the linker for activation of T cells (LAT) are central adaptor proteins that link the activated pre-BCR to downstream events in pre-B cells. Recently, a new transmembrane adaptor called NTAL/LAB/LAT2 (hereafter called NTAL for non-T cell activation linker) with striking functional and structural similarity to LAT has been identified in B cells. In this study, we compare the function of NTAL and LAT in pre-BCR signaling and show that, in contrast to LAT, NTAL does not induce pre-BCR down-regulation, calcium flux, or pre-B cell differentiation.

View Article and Find Full Text PDF

T lymphocytes develop in the thymus from hemopoietic precursors that commit to the T cell lineage under the influence of Notch signals. In this study, we show by single cell analyses that the most immature hemopoietic precursors in the adult mouse thymus are uncommitted and specify to the T cell lineage only after their arrival in the thymus. These precursors express high levels of surface Notch receptors and rapidly lose B cell potential upon the provision of Notch signals.

View Article and Find Full Text PDF

The understanding and analysis of protein associations in living cells is a major goal of molecular biology. Here, we describe an assay for the analysis of protein-protein interactions based on the co-localization of a fused site-specific protease with a cleavable reporter in close proximity to the interaction partner under examination. We exemplified this scheme in the temperature-sensitive Saccharomyces cerevisiae cdc25-2 mutant strain using the nuclear inclusion protease of tobacco etch virus fused to the adaptor protein growth factor receptor binding protein 2 (Grb2).

View Article and Find Full Text PDF

Class IA phosphoinositide 3-kinases (PI3Ks) represent a group of heterodimeric lipid kinases with important functions in cellular signal transduction. The regulatory p85 subunit constitutively binds to the catalytic p110 subunit and mediates the recruitment of the heterodimer to various membrane-localized proteins upon activation by a vast array of stimuli. The functional characterization of protein domains that mediate p85 function has been hampered by a lack of structural data.

View Article and Find Full Text PDF

Protein kinase C (PKC)-delta is a diacylglycerol-dependent, calcium-independent novel PKC isoform and has been demonstrated to exert negative regulatory functions in B lymphocytes as well as in mast cells. Whereas in mast cells PKC-delta functionally interacts with the high-affinity receptor for IgE, FcepsilonR1, no such association has been described for the B cell antigen receptor (BCR). In this report, for the first time, we demonstrate the interaction of PKC-delta with different classes of BCR by means of affinity purification and native protein complex analysis.

View Article and Find Full Text PDF

Objective: Mast cells (MCs) play central roles for the onset and development of immediate-type and inflammatory allergic reactions. Since the inverse relationship between atopic disorders and diabetes mellitus has been observed in animals and humans, we investigated the effects of insulin (Ins) on MC signaling and biological function.

Methods: In bone marrow-derived MCs (BMMCs) from wild-type as well as SHIP-deficient mice Ins as well as insulin-like growth factor-1 (IGF-I)-triggered intracellular signaling events and MC effector functions were studied.

View Article and Find Full Text PDF

The oxysterol-binding protein and oxysterol-binding protein-related protein family has been implicated in lipid transport and metabolism, vesicle trafficking and cell signaling. While investigating the phosphorylation of Akt/protein kinase B in stimulated bone marrow-derived mast cells, we observed that a monoclonal antibody directed against phospho-S473 Akt cross-reacted with oxysterol-binding protein-related protein 9 (ORP9). Further analysis revealed that mast cells exclusively express ORP9S, an N-terminal truncated version of full-length ORP9L.

View Article and Find Full Text PDF

B cell development is characterized by a coordinated progression through defined stages that are controlled at several checkpoints. Signals from the pre-B cell receptor (pre-BCR) are essential for regulated transition from the pre-B cell stage. The adaptor protein SLP-65 plays a key role in this signaling pathway.

View Article and Find Full Text PDF

A redundant role for PKC-epsilon in mast cell signaling and effector function.

Int Immunol

May 2006

Department of Molecular Immunology, Institute for Biology III, University of Freiburg and Max Planck Institute for Immunobiology, Stübeweg 51, 79108 Freiburg, Germany.

Protein kinase (PK) C-epsilon is strongly expressed in mast cells (MCs) and activated in response to antigen-mediated high-affinity receptor for IgE (Fc epsilonR1) engagement. A critical role of PKC-epsilon in antigen-triggered activation of various signaling pathways was observed in basophilic leukemia cells. To study the function of PKC-epsilon in MCs differentiated in vitro from murine bone marrow, we used our established PKC-epsilon null mice.

View Article and Find Full Text PDF

The questions of T cell receptor (TCR) clustering and preferential pairing of TCR alpha- and beta-chains are discussed controversially. We here describe the rare case of a non-pairing TCR alpha-TCR beta combination detected in the murine T cell hybridoma Hy-E6. Of its two TCR alpha-chains (Valpha3.

View Article and Find Full Text PDF

Histone lysine methylation can have positive or negative effects on transcription, depending on the precise methylation site. According to the "histone code" hypothesis these methylation marks can be read by proteins that bind them specifically and then regulate downstream events. Hetero-chromatin protein 1 (HP1), an essential component of heterochromatin, binds specifically to methylated Lys(9) of histone H3 (K9/H3).

View Article and Find Full Text PDF

Metal-protein interactions are vitally important in all living organisms. Metalloproteins, including structural proteins and metabolic enzymes, participate in energy transfer and redox reactions or act as metallochaperones in metal trafficking. Among metal-associated diseases, T cell mediated allergy to nickel (Ni) represents the most common form of human contact hypersensitivity.

View Article and Find Full Text PDF

Hematopoietic precursors continuously colonize the thymus where they give rise mainly to T cells, but also to B and dendritic cells. The lineage relationship between these three cell types is unclear, and it remains to be determined if precursors in the thymus are multipotent, oligopotent, or lineage restricted. Resolution of this question necessitates the determination of the clonal differentiation potential of the most immature precursors in the thymus.

View Article and Find Full Text PDF