3,330 results match your criteria: "Max-Planck Institute for Human Cognitive and Brain Sciences[Affiliation]"

The ability to integrate semantic information into the context of a sentence is essential for human communication. Several studies have shown that the predictability of a final keyword based on the sentence context influences semantic integration on the behavioral, neurophysiological, and neural level. However, the architecture of the underlying network interactions for semantic integration across the lifespan remains unclear.

View Article and Find Full Text PDF

The potential of interleaved TMS-fMRI for linking stimulation-induced changes in task-related activity with behavioral modulations.

Brain Stimul

December 2024

Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Cognitive and Biological Psychology, Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig 04109, Germany.

The simultaneous combination of TMS with fMRI has emerged as a promising means to investigate the direct interaction between stimulation-induced changes at the behavioral and neural activity level. This enables the investigation of whole brain neurobehavioral interactions underlying cognitive disruption or facilitation. Yet to date, the literature on interleaved TMS-fMRI in cognitive neuroscience is sparse and neuromodulatory patterns of different TMS protocols are still poorly understood.

View Article and Find Full Text PDF

Background: Magnetic resonance imaging may suggest spinal cord compression and structural lesions in degenerative cervical myelopathy (DCM) but cannot reveal functional impairments in spinal pathways. We aimed to assess the value of contact heat evoked potentials (CHEPs) in addition to MRI and hypothesized that abnormal CHEPs may be evident in DCM independent of MR-lesions and are related to dynamic mechanical cord stress.

Methods: Individuals with DCM underwent neurologic examination including segmental sensory (pinprick, light touch) and motor testing.

View Article and Find Full Text PDF

Background: Spinal cord injury results in permanent neurological impairment and disability due to the absence of spontaneous regeneration. NG101, a recombinant human antibody, neutralises the neurite growth-inhibiting protein Nogo-A, promoting neural repair and motor recovery in animal models of spinal cord injury. We aimed to evaluate the efficacy of intrathecal NG101 on recovery in patients with acute cervical traumatic spinal cord injury.

View Article and Find Full Text PDF

Why is it that some people seem to learn new languages faster and more easily than others? The present study investigates the neuroanatomical basis of language learning aptitude, with a focus on the multiplication pattern of the transverse temporal gyrus/gyri (TTG/TTGs) of the auditory cortex. The size and multiplication pattern of the first TTG (i.e.

View Article and Find Full Text PDF

Large-scale georeferenced neuroimaging and psychometry data link the urban environmental exposome with brain health.

Environ Res

December 2024

LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Neurology Department and Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland; Neurology Department, Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. Electronic address:

In face of cumulating evidence about the impact of human-induced environmental changes on mental health and behavior, our understanding of the main effects and interactions between environmental factors - i.e., the exposome and the brain - is still limited.

View Article and Find Full Text PDF

Metastability demystified - the foundational past, the pragmatic present and the promising future.

Nat Rev Neurosci

December 2024

Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.

Healthy brain function depends on balancing stable integration between brain areas for effective coordinated functioning, with coexisting segregation that allows subsystems to express their functional specialization. Metastability, a concept from the dynamical systems literature, has been proposed as a key signature that characterizes this balance. Building on this principle, the neuroscience literature has leveraged the phenomenon of metastability to investigate various aspects of brain function in health and disease.

View Article and Find Full Text PDF

Sleep has been demonstrated to support memory formation from early life on. The precise temporal coupling of slow oscillations (SOs) with spindles has been suggested as a mechanism facilitating this consolidation process in thalamocortical networks. Here, we investigated the development of sleep spindles and SOs and their coordinate interplay by comparing frontal, central, and parietal electroencephalogram recordings during a nap between infants aged 2-3 months ( = 31) and toddlers aged 14-17 months ( = 49).

View Article and Find Full Text PDF

Language outcomes of children with hearing loss remain heterogeneous despite recent advances in treatment and intervention. Consonants with high frequency, in particular, continue to pose challenges to affected children's speech perception and production. In this review, the authors evaluate findings of how enriched child-directed speech and song might function as a form of early family-centered intervention to remedy the effects of hearing loss on consonant acquisition already during infancy.

View Article and Find Full Text PDF

Utilizing Centromedian Thalamus Connectivity to Personalize Noninvasive Neuromodulation Targets.

CNS Neurosci Ther

December 2024

Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China.

Introduction: The centromedian nucleus (CM) of the thalamus is essential for arousal, attention, sensory processing, and motor control. Neuromodulation targeting CM dysfunction has shown efficacy in various neurological disorders. However, its individualized precise transcranial magnetic stimulation (TMS) remains unreported.

View Article and Find Full Text PDF

Parents and children often engage in joint play-a domain where mothers and fathers are thought to exhibit disparate behaviors and impact child development via distinct mechanisms. However, little is known about the neural substrates of mother-child and father-child play. In this fMRI study, we sampled the brain activation of parents of preschoolers (N = 88) during a novel event-related adaptation of the virtual ball-tossing game "Cyberball.

View Article and Find Full Text PDF

Given the association of Epstein-Barr virus (EBV) with subjective perception of fatigue and demyelination in clinical conditions, the question about potential subclinical effects in the adult general population remains open. We investigate the association between individuals' EBV immune response and perceived fatigue in a community dwelling cohort (n = 864, age 62 ± 10 years old; 49% women) while monitoring brain tissue properties. Fatigue levels are assessed with the established fatigue severity scale, the EBNA-1 and VCA p18 immunoglobulin G (IgG) chronic response - with multiplex serology and the estimates of local brain volume, myelin content, and axonal density - using relaxometry- and multi-shell diffusion-based magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that allows the modulation of the excitability and plasticity of the human brain. Focalized tDCS setups use specific electrode arrangements to constrain the current flow to circumscribed brain regions. However, the effectiveness of focalized tDCS can be compromised by electrode positioning errors on the scalp, resulting in significant reductions of the current dose reaching the target brain regions for tDCS.

View Article and Find Full Text PDF

The effect of cardiac phase on distractor suppression and motor inhibition in a stop-signal task.

Sci Rep

December 2024

Department of Psychology, General and Experimental Psychology Unit, LMU Munich, Leopoldstr. 13, D-80802, Munich, Germany.

Article Synopsis
  • - Past research indicates that stimuli presented in sync with the heartbeat (systole) improve the ability to filter out distracting information compared to stimuli aligned with the heart's resting phase (diastole).
  • - In an experiment, participants were asked to stop their movement response while distracting visual stimuli (moving dots) were shown either during the heartbeat's contraction phase or resting phase, revealing that stopping responses was more effective when the distractors coincided with systole.
  • - The study found that during systole, participants showed reduced activity in the brain related to distraction but increased readiness to respond to stop signals, suggesting that the timing of visual distractions can significantly affect how well motor responses are inhibited.
View Article and Find Full Text PDF

Memory deficits are a hallmark of many different neurological and psychiatric conditions. The Rey-Osterrieth complex figure (ROCF) is the state-of-the-art assessment tool for neuropsychologists across the globe to assess the degree of non-verbal visual memory deterioration. To obtain a score, a trained clinician inspects a patient's ROCF drawing and quantifies deviations from the original figure.

View Article and Find Full Text PDF

Scientific discoveries often hinge on synthesizing decades of research, a task that potentially outstrips human information processing capacities. Large language models (LLMs) offer a solution. LLMs trained on the vast scientific literature could potentially integrate noisy yet interrelated findings to forecast novel results better than human experts.

View Article and Find Full Text PDF

Evaluating whether someone's behavior is praiseworthy or blameworthy is a fundamental human trait. A seminal study by Hamlin and colleagues in 2007 suggested that the ability to form social evaluations based on third-party interactions emerges within the first year of life: infants preferred a character who helped, over hindered, another who tried but failed to climb a hill. This sparked a new line of inquiry into the origins of social evaluations; however, replication attempts have yielded mixed results.

View Article and Find Full Text PDF

The human cerebral cortex shows hemispheric asymmetry, yet the microstructural basis of this asymmetry remains incompletely understood. Here, we probe layer-specific microstructural asymmetry using one post-mortem male brain. Overall, anterior and posterior regions show leftward and rightward asymmetry respectively, but this pattern varies across cortical layers.

View Article and Find Full Text PDF

Knowledge about personally familiar people and places is extremely rich and varied, involving pieces of semantic information connected in unpredictable ways through past autobiographical memories. In this work, we investigate whether we can capture brain processing of personally familiar people and places using subject-specific memories, after transforming them into vectorial semantic representations using language models. First, we asked participants to provide us with the names of the closest people and places in their lives.

View Article and Find Full Text PDF

Complex macro-scale patterns of brain activity that emerge during periods of wakeful rest provide insight into the organisation of neural function, how these differentiate individuals based on their traits, and the neural basis of different types of self-generated thoughts. Although brain activity during wakeful rest is valuable for understanding important features of human cognition, its unconstrained nature makes it difficult to disentangle neural features related to personality traits from those related to the thoughts occurring at rest. Our study builds on recent perspectives from work on ongoing conscious thought that highlight the interactions between three brain networks - ventral and dorsal attention networks, as well as the default mode network.

View Article and Find Full Text PDF
Article Synopsis
  • * To study how networks adjust to local disturbances, researchers applied transcranial magnetic stimulation (TMS) to the IPL while participants engaged in different cognitive tasks and also at rest.
  • * Results showed that while TMS reduced network activity during tasks, it enhanced interactions among networks during rest, demonstrating the brain's short-term adaptive plasticity in response to inhibiting specific network nodes.
View Article and Find Full Text PDF

This study investigates the proposed mechanism of mindfulness, its impact on body awareness and interoception, and its potential benefits for mental and physical health. Using psychophysical assessments, we compared 31 expert meditators with 33 matched controls (non-meditators who engage in regular reading, more than 5 h per week) in terms of somatosensory accuracy with a somatosensory signal detection task (SSDT) and interoceptive sensibility via self-report measures. We hypothesized that meditators would demonstrate superior somatosensory accuracy, indicative of heightened body awareness, potentially linked to increased alpha modulation in the somatosensory cortex, as observed via electroencephalography (EEG).

View Article and Find Full Text PDF

The cerebellum plays important roles in motor, cognitive, and emotional behaviors. Previous cerebellar coordinate-based meta-analyses and mappings have attributed different behaviors to cerebellar subareas, but an accurate behavioral topography is lacking. Here, we show overrepresentation of superior activation foci, which may be exacerbated by historical cerebellar neglect.

View Article and Find Full Text PDF