726 results match your criteria: "Max Planck Institute of Experimental Medicine[Affiliation]"

Mitochondrial function is critically dependent on the folding of the mitochondrial inner membrane into cristae; indeed, numerous human diseases are associated with aberrant crista morphologies. With the MICOS complex, OPA1 and the F F -ATP synthase, key players of cristae biogenesis have been identified, yet their interplay is poorly understood. Harnessing super-resolution light and 3D electron microscopy, we dissect the roles of these proteins in the formation of cristae in human mitochondria.

View Article and Find Full Text PDF

In light of the present therapeutic situation in COVID-19, any measure to improve course and outcome of seriously affected individuals is of utmost importance. We recap here evidence that supports the use of human recombinant erythropoietin (EPO) for ameliorating course and outcome of seriously ill COVID-19 patients. This brief expert review grounds on available subject-relevant literature searched until May 14, 2020, including Medline, Google Scholar, and preprint servers.

View Article and Find Full Text PDF

Oligodendrocytes Provide Antioxidant Defense Function for Neurons by Secreting Ferritin Heavy Chain.

Cell Metab

August 2020

Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany. Electronic address:

An evolutionarily conserved function of glia is to provide metabolic and structural support for neurons. To identify molecules generated by glia and with vital functions for neurons, we used Drosophila melanogaster as a screening tool, and subsequently translated the findings to mice. We found that a cargo receptor operating in the secretory pathway of glia was essential to maintain axonal integrity by regulating iron buffering.

View Article and Find Full Text PDF

Antibody-based therapies hold promise for a safe and efficient treatment of cancer. The identification of target tumor cells through a specific antigen enriched on their surface and the subsequent delivery of the therapeutic agent only to those cells requires, besides the efficacy of the therapeutic agent itself, the identification of an antigen enriched on the surface of tumor cells, the generation of high affinity antibodies against that antigen. We have generated single-domain antibodies (nanobodies) against the voltage-gated potassium channel Kv10.

View Article and Find Full Text PDF

PTPσ Controls Presynaptic Organization of Neurotransmitter Release Machinery at Excitatory Synapses.

iScience

June 2020

Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea. Electronic address:

Leukocyte common antigen-related receptor tyrosine phosphatases (LAR-RPTPs) are evolutionarily conserved presynaptic organizers. The synaptic role of vertebrate LAR-RPTPs in vivo, however, remains unclear. In the current study, we analyzed the synaptic role of PTPσ using newly generated, single conditional knockout (cKO) mice targeting PTPσ.

View Article and Find Full Text PDF

Background: Recently, we reported a strong, disease-independent relationship between accumulated preadult environmental risks and violent aggression later in life. Risk factors were interchangeable, and migration was among the explored risks. Alarmed by these data, we assessed collected risk load in young 'healthy' refugees as a specific subgroup of current migration streams and evaluated first signals of behavioral abnormalities.

View Article and Find Full Text PDF

Protein trapping leads to altered synaptic proteostasis in synucleinopathies.

FEBS J

December 2020

Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.

Parkinson's disease (PD) is associated with the accumulation of alpha-synuclein (aSyn) in intracellular inclusions known as Lewy bodies and Lewy neurites. Under physiological conditions, aSyn is found at the presynaptic terminal and exists in a dynamic equilibrium between soluble, membrane-associated and aggregated forms. Emerging evidence suggests that, under pathological conditions, aSyn begins to accumulate and acquire a toxic function at the synapse, impairing their normal function and connectivity.

View Article and Find Full Text PDF

Background And Purpose: Systematic research on the effect of Charcot-Marie-Tooth (CMT) disease on the outcome of pregnancy and conversely the effect of pregnancy on neuropathy is still sparse.

Methods: A clinical cohort study and cross-sectional study within the German CMT-NET was conducted between 2016 and 2019. Inclusion criteria were a confirmed diagnosis of CMT and at least one completed pregnancy after 1990.

View Article and Find Full Text PDF

Cryo-FIB-SEM as a promising tool for localizing proteins in 3D.

J Struct Biol

July 2020

Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France; Université de Strasbourg, Illkirch, France.

Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) is an invaluable tool to visualize the 3D architecture of cell constituents and map cell networks. Recently, amorphous ice embedding techniques have been associated with FIB-SEM to ensure that the biological material remains as close as possible to its native state. Here we have vitrified human HeLa cells and directly imaged them by cryo-FIB-SEM with the secondary electron InLens detector at cryogenic temperature and without any staining.

View Article and Find Full Text PDF

Through a genetic screen in zebrafish, we identified a mutant with disruption to myelin in both the CNS and PNS caused by a mutation in a previously uncharacterized gene, slc12a2b, predicted to encode a Na+, K+, and Cl- (NKCC) cotransporter, NKCC1b. slc12a2b/NKCC1b mutants exhibited a severe and progressive pathology in the PNS, characterized by dysmyelination and swelling of the periaxonal space at the axon-myelin interface. Cell-type-specific loss of slc12a2b/NKCC1b in either neurons or myelinating Schwann cells recapitulated these pathologies.

View Article and Find Full Text PDF

Stem cells such as mesenchymal stem cells (MSCs) enhance neurological recovery in preclinical stroke models by secreting extracellular vesicles (EVs). Since previous reports have focused on the application of MSC-EVs only, the role of the most suitable host cell for EV enrichment and preclinical stroke treatment remains elusive. The present study aimed to evaluate the therapeutic potential of EVs derived from neural progenitor cells (NPCs) following experimental stroke.

View Article and Find Full Text PDF

EAG ( or ) are a subfamily of the voltage-gated potassium (Kv) channels. Like for all potassium channels, opening of EAG channels drives the membrane potential toward its equilibrium value for potassium, thus setting the resting potential and repolarizing action potentials. As voltage-dependent channels, they switch between open and closed conformations (gating) when changes in membrane potential are sensed by a voltage sensing domain (VSD) which is functionally coupled to a pore domain (PD) containing the permeation pathway, the potassium selectivity filter, and the channel gate.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease characterized by patchy scarring of the distal lung with limited therapeutic options and poor prognosis. Here, we show that conditional deletion of the ubiquitin ligase Nedd4-2 (Nedd4l) in lung epithelial cells in adult mice produces chronic lung disease sharing key features with IPF including progressive fibrosis and bronchiolization with increased expression of Muc5b in peripheral airways, honeycombing and characteristic alterations in the lung proteome. NEDD4-2 is implicated in the regulation of the epithelial Na channel critical for proper airway surface hydration and mucus clearance and the regulation of TGFβ signaling, which promotes fibrotic remodeling.

View Article and Find Full Text PDF

Kaufman oculocerebrofacial syndrome (KOS) is a severe autosomal recessive disorder characterized by intellectual disability, developmental delays, microcephaly, and characteristic dysmorphisms. Biallelic mutations of UBE3B, encoding for a ubiquitin ligase E3B are causative for KOS. In this report, we characterize neuronal functions of its murine ortholog Ube3b and show that Ube3b regulates dendritic branching in a cell-autonomous manner.

View Article and Find Full Text PDF

Fluorescent semiconductor nanocrystals, known as quantum dots (QDs), and magnetic nanoparticles (MNPs) are extensively studied perspective tools for optical (fluorescence) and magnetic resonance imaging techniques. The unique optical properties, high photostability, and bright luminescence of QDs make them more promising fluorophores than the classical organic dyes. Encoding polyelectrolyte microcapsules with QDs and MNPs ensures their sensitivity to both photoexcitation and magnetic field.

View Article and Find Full Text PDF

SUMOylation is a dynamic post-translational protein modification that primarily takes place in cell nuclei, where it plays a key role in multiple DNA-related processes. In neurons, the SUMOylation-dependent control of a subset of neuronal transcription factors is known to regulate various aspects of nerve cell differentiation, development, and function. In an unbiased screen for endogenous SUMOylation targets in the developing mouse brain, based on a His -HA-SUMO1 knock-in mouse line, we previously identified the transcription factor Zinc finger and BTB domain-containing 20 (Zbtb20) as a new SUMO1-conjugate.

View Article and Find Full Text PDF

Cochlear implants (CIs) are considered the most successful neuroprosthesis as they enable speech comprehension in the majority of half a million CI users suffering from sensorineural hearing loss. By electrically stimulating the auditory nerve, CIs constitute an interface re-connecting the brain and the auditory scene, providing the patient with information regarding the latter. However, since electric current is hard to focus in conductive environments such as the cochlea, the precision of electrical sound encoding-and thus quality of artificial hearing-is limited.

View Article and Find Full Text PDF

In this publication, it is shown how to synthesize silver nanoparticles from silver cations out of aqueous solutions by the use of an atmospheric pressure plasma source. The use of an atmospheric pressure plasma leads to a very fast reduction of silver ions in extensive solvent volumes. In order to investigate the nanoparticle synthesis process, ultraviolet/visible (UV/VIS) absorption spectra were recorded in situ.

View Article and Find Full Text PDF

Lithium is a first-line medication for bipolar disorder (BD), but only one in three patients respond optimally to the drug. Since evidence shows a strong clinical and genetic overlap between depression and bipolar disorder, we investigated whether a polygenic susceptibility to major depression is associated with response to lithium treatment in patients with BD. Weighted polygenic scores (PGSs) were computed for major depression (MD) at different GWAS p value thresholds using genetic data obtained from 2586 bipolar patients who received lithium treatment and took part in the Consortium on Lithium Genetics (ConLiGen) study.

View Article and Find Full Text PDF

Although similar in molecular composition, synapses can exhibit strikingly distinct functional transmitter release and plasticity characteristics. To determine whether ultrastructural differences co-define this functional heterogeneity, we combine hippocampal organotypic slice cultures, high-pressure freezing, freeze substitution, and 3D-electron tomography to compare two functionally distinct synapses: hippocampal Schaffer collateral and mossy fiber synapses. We find that mossy fiber synapses, which exhibit a lower release probability and stronger short-term facilitation than Schaffer collateral synapses, harbor lower numbers of docked synaptic vesicles at active zones and a second pool of possibly tethered vesicles in their vicinity.

View Article and Find Full Text PDF

Short-term plasticity gates information transfer across neuronal synapses and is thought to be involved in fundamental brain processes, such as cortical gain control and sensory adaptation. Neurons employ synaptic vesicle priming proteins of the CAPS and Munc13 families to shape short-term plasticity in vitro, but the relevance of this phenomenon for information processing in the intact brain is unknown. By combining sensory stimulation with in vivo patch-clamp recordings in anesthetized mice, we show that genetic deletion of CAPS-1 in thalamic neurons results in more rapid adaptation of sensory-evoked subthreshold responses in layer 4 neurons of the primary visual cortex.

View Article and Find Full Text PDF

Pathology of myelinated axons in the PLP-deficient mouse model of spastic paraplegia type 2 revealed by volume imaging using focused ion beam-scanning electron microscopy.

J Struct Biol

May 2020

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany. Electronic address:

Advances in electron microscopy including improved imaging techniques and state-of-the-art detectors facilitate imaging of larger tissue volumes with electron microscopic resolution. In combination with genetic tools for the generation of mouse mutants this allows assessing the three-dimensional (3D) characteristics of pathological features in disease models. Here we revisited the axonal pathology in the central nervous system of a mouse model of spastic paraplegia type 2, the Plp mouse.

View Article and Find Full Text PDF

Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in mammalian brain. In clinical settings, recombinant EPO treatment has revealed a remarkable improvement of cognition, but underlying mechanisms have remained obscure. Here, we show with a novel line of reporter mice that cognitive challenge induces local/endogenous hypoxia in hippocampal pyramidal neurons, hence enhancing expression of EPO and EPO receptor (EPOR).

View Article and Find Full Text PDF

Proteome and transcriptome analyses aim at comprehending the molecular profiles of the brain, its cell-types and subcellular compartments including myelin. Despite the relevance of the peripheral nervous system for normal sensory and motor capabilities, analogous approaches to peripheral nerves and peripheral myelin have fallen behind evolving technical standards. Here we assess the peripheral myelin proteome by gel-free, label-free mass-spectrometry for deep quantitative coverage.

View Article and Find Full Text PDF