2,955 results match your criteria: "Max Planck Institute of Biochemistry.[Affiliation]"

ADAMTS12 promotes fibrosis by restructuring extracellular matrix to enable activation of injury-responsive fibroblasts.

J Clin Invest

September 2024

Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany.

Fibrosis represents the uncontrolled replacement of parenchymal tissue with extracellular matrix (ECM) produced by myofibroblasts. While genetic fate-tracing and single-cell RNA-Seq technologies have helped elucidate fibroblast heterogeneity and ontogeny beyond fibroblast to myofibroblast differentiation, newly identified fibroblast populations remain ill defined, with respect to both the molecular cues driving their differentiation and their subsequent role in fibrosis. Using an unbiased approach, we identified the metalloprotease ADAMTS12 as a fibroblast-specific gene that is strongly upregulated during active fibrogenesis in humans and mice.

View Article and Find Full Text PDF

A hallmark of neurodegenerative diseases is the progressive loss of proteostasis, leading to the accumulation of misfolded proteins or protein aggregates, with subsequent cytotoxicity. To combat this toxicity, cells have evolved degradation pathways (ubiquitin-proteasome system and autophagy) that detect and degrade misfolded proteins. However, studying the underlying cellular pathways and mechanisms has remained a challenge, as formation of many types of protein aggregates is asynchronous, with individual cells displaying distinct kinetics, thereby hindering rigorous time-course studies.

View Article and Find Full Text PDF

The mitochondrial calcium uniporter channel (MCUC) mediates mitochondrial calcium entry, regulating energy metabolism and cell death. Although several MCUC components have been identified, the molecular basis of mitochondrial calcium signaling networks and their remodeling upon changes in uniporter activity have not been assessed. Here, we map the MCUC interactome under resting conditions and upon chronic loss or gain of mitochondrial calcium uptake.

View Article and Find Full Text PDF

Colorectal adenomas (CRAs) are potential precursor lesions to adenocarcinomas, currently classified by morphological features. We aimed to establish a molecular feature-based risk allocation framework toward improved patient stratification. Deep visual proteomics (DVP) is an approach that combines image-based artificial intelligence with automated microdissection and ultra-high sensitive mass spectrometry.

View Article and Find Full Text PDF

We present a way to encode more information in fluorescence imaging by splitting the original point spread function (PSF), which offers broadband operation and compatibility with other PSF engineering modalities and existing analysis tools. We demonstrate the approach using the 'Circulator', an add-on that encodes the fluorophore emission band into the PSF, enabling simultaneous multicolor super-resolution and single-molecule microscopy using essentially the full field of view.

View Article and Find Full Text PDF

Accurate chromosome segregation requires the attachment of microtubules to centromeres, epigenetically defined by the enrichment of CENP-A nucleosomes. During DNA replication, CENP-A nucleosomes undergo dilution. To preserve centromere identity, correct amounts of CENP-A must be restored in a cell cycle-controlled manner orchestrated by the Mis18 complex (Mis18α-Mis18β-Mis18BP1).

View Article and Find Full Text PDF

Single-molecule digital sizing of proteins in solution.

Nat Commun

September 2024

Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.

The physical characterization of proteins in terms of their sizes, interactions, and assembly states is key to understanding their biological function and dysfunction. However, this has remained a difficult task because proteins are often highly polydisperse and present as multicomponent mixtures. Here, we address this challenge by introducing single-molecule microfluidic diffusional sizing (smMDS).

View Article and Find Full Text PDF

Antibodies and complement are key drivers of thrombosis.

Immunity

September 2024

Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany.

Venous thromboembolism (VTE) is a common, deadly disease with an increasing incidence despite preventive efforts. Clinical observations have associated elevated antibody concentrations or antibody-based therapies with thrombotic events. However, how antibodies contribute to thrombosis is unknown.

View Article and Find Full Text PDF

The major driver oncogenes MYC, mutant KRAS, and mutant TP53 often coexist and cooperate to promote human neoplasia, which results in anticancer therapeutic opportunities within their downstream molecular programs. However, little research has been conducted on whether redundancy and competition among oncogenes affect their programs and ability to drive neoplasia. By CRISPR‒Cas9-mediated downregulation we evaluated the downstream proteomics and transcriptomics programs of MYC, mutant KRAS, and mutant TP53 in a panel of cell lines with either one or three of these oncogenes activated, in cancers of the lung, colon and pancreas.

View Article and Find Full Text PDF

Motoneurons critically depend on precise spatial and temporal control of translation for axon growth and the establishment and maintenance of neuromuscular connections. While defects in local translation have been implicated in the pathogenesis of motoneuron disorders, little is known about the mechanisms regulating axonal protein synthesis. Here, we report that motoneurons derived from Hnrnpr knockout mice show reduced axon growth accompanied by lowered synthesis of cytoskeletal and synaptic components in axons.

View Article and Find Full Text PDF

Chaperonins are large barrel-shaped complexes that mediate ATP-dependent protein folding. The bacterial chaperonin GroEL forms juxtaposed rings that bind unfolded protein and the lid-shaped cofactor GroES at their apertures. In vitro analyses of the chaperonin reaction have shown that substrate protein folds, unimpaired by aggregation, while transiently encapsulated in the GroEL central cavity by GroES.

View Article and Find Full Text PDF

Mechanoresponsive regulation of myogenesis by the force-sensing transcriptional regulator Tono.

Curr Biol

September 2024

Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany. Electronic address:

Muscle morphogenesis is a multi-step program, starting with myoblast fusion, followed by myotube-tendon attachment and sarcomere assembly, with subsequent sarcomere maturation, mitochondrial amplification, and specialization. The correct chronological order of these steps requires precise control of the transcriptional regulators and their effectors. How this regulation is achieved during muscle development is not well understood.

View Article and Find Full Text PDF

Rapid phagosome isolation enables unbiased multiomic analysis of human microglial phagosomes.

Immunity

September 2024

Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. Electronic address:

Microglia are the resident macrophages of the central nervous system (CNS). Their phagocytic activity is central during brain development and homeostasis-and in a plethora of brain pathologies. However, little is known about the composition, dynamics, and function of human microglial phagosomes under homeostatic and pathological conditions.

View Article and Find Full Text PDF

Normal-sized cells of Dictyostelium build up a front-tail polarity when they respond to a gradient of chemoattractant. To challenge the polarity-generating system, cells are fused to study the chemotactic response of oversized cells that extend multiple fronts toward the source of attractant. An aspect that can be explored in these cells is the relationship of spontaneously generated actin waves to actin reorganization in response to chemoattractant.

View Article and Find Full Text PDF

Disease-modifying therapeutics in the α-synucleinopathies multiple system atrophy (MSA) and Parkinson's Disease (PD) are in early phases of clinical testing. Involving patients' preferences including therapy-associated risk willingness in initial stages of therapy development has been increasingly pursued in regulatory approval processes. In our study with 49 MSA and 38 PD patients, therapy-associated risk willingness was quantified using validated standard gamble scenarios for varying severities of potential drug or surgical side effects.

View Article and Find Full Text PDF

The ribosome-associated quality control (RQC) pathway resolves stalled ribosomes. As part of RQC, stalled nascent polypeptide chains (NCs) are appended with CArboxy-Terminal amino acids (CAT tails) in an mRNA-free, non-canonical elongation process. CAT tail composition includes Ala, Thr, and potentially other residues.

View Article and Find Full Text PDF

Selection of antibody-binding covalent aptamers.

Commun Chem

August 2024

Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii, Honolulu, HI, 96813, USA.

Aptamers are oligonucleotides with antibody-like binding function, selected from large combinatorial libraries. In this study, we modified a DNA aptamer library with N-hydroxysuccinimide esters, enabling covalent conjugation with cognate proteins. We selected for the ability to bind to mouse monoclonal antibodies, resulting in the isolation of two distinct covalent binding motifs.

View Article and Find Full Text PDF

Multi-omics characterization of the monkeypox virus infection.

Nat Commun

August 2024

Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany.

Multiple omics analyzes of Vaccinia virus (VACV) infection have defined molecular characteristics of poxvirus biology. However, little is known about the monkeypox (mpox) virus (MPXV) in humans, which has a different disease manifestation despite its high sequence similarity to VACV. Here, we perform an in-depth multi-omics analysis of the transcriptome, proteome, and phosphoproteome signatures of MPXV-infected primary human fibroblasts to gain insights into the virus-host interplay.

View Article and Find Full Text PDF

DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) is a super-resolution fluorescence microscopy technique that achieves single-molecule 'blinking' by transient DNA hybridization. Despite blinking kinetics being largely independent of fluorescent dye choice, the dye employed substantially affects measurement quality. Thus far, there has been no systematic overview of dye performance for DNA-PAINT.

View Article and Find Full Text PDF

Quantitative phosphoproteomic data has mostly been reported from experiments comparing relative phosphopeptides intensities in two or more different conditions, while the ideal parameter to compare is phosphopeptides occupancies. This term is scarcely used and therefore barely implemented in phosphoproteomics studies, and this should be of concern for the scientific journals. In order to demonstrate the relevance of this issue, here we show how the method of choice affects the interpretation of the data.

View Article and Find Full Text PDF

The complexity and heterogeneity of PD necessitate advanced diagnostic and prognostic tools to elucidate its molecular mechanisms accurately. In this study, we addressed this challenge by conducting a pilot phospho-proteomic analysis of peripheral blood mononuclear cells (PBMCs) from idiopathic PD patients at varying disease stages to delineate the functional alterations occurring in these cells throughout the disease course and identify key molecules and pathways contributing to PD progression. By integrating clinical data with phospho-proteomic profiles across various PD stages, we identify potential stage-specific molecular signatures indicative of disease progression.

View Article and Find Full Text PDF

Within the cell, chemical reactions are often confined and organized through a modular architecture. This facilitates the targeted localization of molecular species and their efficient translocation to subsequent sites. Here we present a cell-free nanoscale model that exploits compartmentalization strategies to carry out regulated protein unfolding and degradation.

View Article and Find Full Text PDF

Substitution of disulfide bonds with a diselenide bonds in peptides and proteins is an often-used strategy to increase the stability of naturally occurring peptides and proteins. In this paper, diselenide metathesis between model diselenide dimer peptides, as well as that in diselenide(s)-substituted biologically active peptides, were analyzed. Surprisingly, depending on the tertiary structure of the peptides, we observed that the metathesis reaction occurs under physiological conditions even in the absence of reducing agents, light and heating.

View Article and Find Full Text PDF

Monovalent Pseudo-Natural Product Degraders Supercharge the Native Degradation of IDO1 by KLHDC3.

bioRxiv

July 2024

Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.

Targeted protein degradation (TPD) modulates protein function beyond inhibition of enzyme activity or protein-protein interactions. Most degraders function by proximity induction, and directly bridge an E3 ligase with the target to be degraded. However, many proteins might not be addressable via proximity-based degraders, and other challenges, such as resistance acquisition, exist.

View Article and Find Full Text PDF