196 results match your criteria: "Max Planck Institute for Physiological and Clinical Research[Affiliation]"

Leiomyosarcomas remain challenging tumors to manage and novel therapy strategies besides radiation and conventional chemotherapy are needed. Targeting angiogenesis by inhibition of vascular endothelial growth factor (VEGF) receptor tyrosine kinases (RTKs) of the tumor vasculature with small molecules is a promising new therapy. It has been shown recently that these receptors are not only expressed on tumor endothelium but also on tumor cells themselves.

View Article and Find Full Text PDF

Sustained JNK signaling by proteolytically processed HPK1 mediates IL-3 independent survival during monocytic differentiation.

Cell Death Differ

March 2007

Max-Planck-Institute for Physiological and Clinical Research, WG Kerckhoff-Institute, Parkstrasse 1, D-61231 Bad Nauheim, Germany.

We studied monocytic differentiation of primary mouse progenitor cells to understand molecular mechanisms of differentiation. We found a tightly controlled non-apoptotic activation of caspase-3 that correlated with differentiation. Although caspase activity was already detected during monocytic differentiation, a caspase-3 target has not been identified yet.

View Article and Find Full Text PDF

In vivo, pathological conditions such as ischemia and ischemia/reperfusion are known to damage the blood-brain barrier (BBB) leading to the development of vasogenic brain edema. Using an in vitro model of the BBB, consisting of brain-derived microvascular endothelial cells (BMEC), it was demonstrated that hypoxia-induced paracellular permeability was strongly aggravated by reoxygenation (H/R), which was prevented by catalase suggesting that H2O2 is the main mediator of the reoxygenation effect. Therefore, mechanisms leading to H2O2-induced hyperpermeability were investigated.

View Article and Find Full Text PDF

Pathophysiology of collateral development.

Coron Artery Dis

November 2004

Department of Experimental Cardiology, Max-Planck-Institute for Physiological and Clinical Research, Bad Nauheim, Germany.

The formation of collateral arteries in patients suffering from occlusive atherosclerotic vascular diseases has been frequently reported. The growth of these collateral arteries has been termed 'arteriogenesis'. Clinical observations and investigations using various animal models support the hypothesis that the mechanism of arteriogenesis is based on the remodelling of pre-existing collateral anastomoses.

View Article and Find Full Text PDF

Growth of collateral blood vessels (arteriogenesis) is potentially able to preserve structure and function of limbs and organs after occlusion of a major artery. The success of the remodeling process depends on the following conditions: (1) existence of an arteriolar network that connects the preocclusive with the postocclusive microcirculation; (2) activation of the arteriolar endothelium by elevated fluid shear stress; (3) invasion (but not incorporation) of bone marrow-derived cells; and (4) proliferation of endothelial and smooth muscle cells. Most organs of most mammals including man can rely on the existence of interconnecting arterioles in most organs and tissues with heart being the exception in rodents and pigs.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is accompanied by a breakdown of the blood-brain barrier (BBB) leading to edema formation and aggravation of the disease. Interferon-beta (IFN-beta) has been approved for the treatment of MS and besides its immunomodulatory effects has been demonstrated to lead to a stabilization of BBB integrity in vivo. To investigate whether human recombinant IFN-beta exerts direct effects on the BBB, we used an in vitro BBB model in which brain endothelial cells in coculture with astrocytes form a tight permeability barrier for 3H-inulin and 14C-sucrose.

View Article and Find Full Text PDF

Objective: The role of fluid shear stress (FSS) in collateral vessel growth remains disputed and prospective in vivo experiments to test its morphogenic power are rare. Therefore, we studied the influence of FSS on arteriogenesis in a new model with extremely high levels of collateral flow and FSS in pig and rabbit hind limbs.

Methods And Results: A side-to-side anastomosis was created between the distal stump of one of the bilaterally occluded femoral arteries with the accompanying vein.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF) and the high-affinity VEGF receptor Flk-1/KDR (VEGFR-2) are key regulators of tumor angiogenesis. Strategies to block VEGF/VEGFR-2 signaling were successfully used to inhibit experimental tumor growth and indicated that VEGFR-2 is the main signaling VEGF receptor in proliferating tumor endothelium. Here, we investigated the role of the VEGF receptor-1 (VEGFR-1/Flt-1) in the vascularization of 2 different experimental tumors in vivo.

View Article and Find Full Text PDF

Purpose: To evaluate the feasibility of using time-of-flight (TOF) imaging to directly measure hindlimb blood flow in a mouse model of peripheral vascular disease.

Materials And Methods: Four tubes were imaged simultaneously (diameters = 0.39 mm, 0.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF-A) is the founding member of a family of angiogenic proteins with various binding abilities to three cognate VEGF receptors. Previously, a gene encoding from the genome of parapox orf virus (OV) with about 25% amino acid identity to mammalian VEGF-A was named VEGF-E and shown to bind and specifically activate the vascular endothelial growth factor receptor VEGFR-2 (KDR/flk-1). Here, we have generated a novel heparin-binding form of VEGF-E by introducing the heparin-domain of the human VEGF-A(165) splice variant into the viral VEGF-E protein.

View Article and Find Full Text PDF

The in vivo detection of growing collateral vessels following arterial occlusion is difficult in small animals. We have addressed the feasibility of performing high resolution time-of-flight angiograms to monitor the growth of collateral vessels after femoral artery occlusion in mice. We will also present a low-pass quadrature birdcage coil construction with a sufficient signal-to-noise ratio to produce high resolution.

View Article and Find Full Text PDF

Arteriogenesis has been associated with the presence of monocytes/macrophages within the collateral vessel wall. Induced macrophage migration in vivo is driven by the binding of monocyte chemoattractant protein-1 (MCP-1, or CCL2 in the new nomenclature) to the CCR2-chemokine receptor on macrophages. To determine whether the CCL2-CCR2 signaling pathway is involved in the accumulation of macrophages in growing collateral vessels, we used mice that are deficient in CCR2 in a model of experimental arterial occlusion and collateral vessel growth.

View Article and Find Full Text PDF

The use of the Cre-loxP recombination system allows the conditional inactivation of genes in mice. The availability of transgenic mice in which the Cre recombinase expression is highly cell type specific is a prerequisite to successfully use this system. We previously have characterized regulatory regions of the mouse flk-1 gene sufficient for endothelial cell-specific expression of the LacZ reporter gene in transgenic mice.

View Article and Find Full Text PDF

In the central nervous system (CNS) complex endothelial tight junctions (TJs) form a restrictive paracellular diffusion barrier, the blood-brain barrier (BBB). Pathogenic changes within the CNS are frequently accompanied by the loss of BBB properties, resulting in brain edema. In order to investigate whether BBB leakiness can be monitored by a loss of TJ proteins from cellular borders, we used an in vitro BBB model where brain endothelial cells in co-culture with astrocytes form a tight permeability barrier for 3H-inulin and 14C-sucrose.

View Article and Find Full Text PDF

Objective: Collateral artery growth (arteriogenesis) can be induced in rabbit and mice by occlusion of the femoral artery. We aimed to identify genes that are differentially expressed during arteriogenesis.

Methods: 24 h after femoral ligation or sham operation collateral arteries were isolated from New Zealand white rabbits, mRNAs were extracted and amplified using the SMART technique.

View Article and Find Full Text PDF

Proteasome inhibitors are potent inducers of cell death. The cytotoxic effect of proteasome inhibitors in general appears to be selective for proliferating cells, while quiescent cells seem to be protected. Conflicting results have been reported on the role of the CKI p27Kip1 either in promoting or inhibiting apoptosis mediated by proteasome inhibitors and other drugs.

View Article and Find Full Text PDF

Tissue factor is the prime initiator of blood coagulation. Expression of tissue factor in tumor endothelial cells leads to thrombus formation, occlusion of vessels and development of hemorrhagic infarctions in the tumor tissue, often followed by regression of the tumor. Tumor cells produce endogenous vascular endothelial growth factor (VEGF), which sensitizes endothelial cells for systemically administered tumor necrosis factor alpha (TNF alpha) and synergistically enhances the TNF-induced expression of tissue factor.

View Article and Find Full Text PDF

Endothelial intercellular adhesion molecule 1 (ICAM-1) and ICAM-2 are both involved in lymphocyte extravasation during immunosurveillance and inflammation. To define their exact role during T-cell extravasation, we used mouse T cells and ICAM-1-/-ICAM-2-/- brain endothelioma cells. ICAM-1-/-ICAM-2-/- brain endothelioma cells did not support transendothelial migration (TEM) of T cells in vitro.

View Article and Find Full Text PDF

Phagocytic cells contain NADPH oxidase that they use for host defense by catalyzing the production of superoxide. Bacterial lipopolysaccharide (LPS) has been found to stimulate NADPH oxidase in mobile and sessile macrophages and microglia. It also evokes fever in homeothermic animals and men, a reaction mediated by central nervous system (CNS) activities.

View Article and Find Full Text PDF

Mutations causing familial hypertrophic cardiomyopathy (HCM) have been described in at least 11 genes encoding cardiac sarcomeric proteins. In this study, three previously unknown deletions have been identified in the human cardiac genes coding for beta-myosin heavy chain (MYH7 on chromosome 14) and myosin-binding protein-C (MYBPC3 on chromosome 11). In family MM, a 3-bp deletion in MYH7 was detected to be associated with loss of glutamic acid in position 927 (DeltaE927) of the myosin rod.

View Article and Find Full Text PDF

During cerebral ischemia, angiogenesis occurs inside and around the infarcted area. The growth of new blood vessels may contribute to a better outcome after stroke due to accelerated and increased delivery of nutrients and oxygen to the ischemic tissue. The platelet-derived growth factor (PDGF)-B/PDGF receptor (PDGFR)-beta system, hitherto thought to contribute mainly to neuroprotection, may also support angiogenesis and vascular remodeling by mediating interactions of endothelial cells with pericytes after cerebral ischemia.

View Article and Find Full Text PDF

Overexpression of the cyclin-dependent kinase inhibitor p27(Kip1) has been demonstrated to induce cell cycle arrest and apoptosis in various cancer cell lines, but has also been associated with the opposite effect of enhanced survival of tumor cells and increased resistance towards chemotherapeutic treatment. To address the question of how p27(Kip1) expression is related to apoptosis induction, we studied doxycycline-regulated p27(Kip1) expression in K562 erythroleukemia cells. p27(Kip1) expression effectively retards proliferation, but it is not sufficient to induce apoptosis in K562 cells.

View Article and Find Full Text PDF