171 results match your criteria: "Massachusetts Institute of Technology MIT and Harvard[Affiliation]"

Infection with Lassa virus (LASV) can cause Lassa fever, a haemorrhagic illness with an estimated fatality rate of 29.7%, but causes no or mild symptoms in many individuals. Here, to investigate whether human genetic variation underlies the heterogeneity of LASV infection, we carried out genome-wide association studies (GWAS) as well as seroprevalence surveys, human leukocyte antigen typing and high-throughput variant functional characterization assays.

View Article and Find Full Text PDF

Aberrant stem cell-like activity and impaired differentiation are central to the development of colorectal cancer (CRC). To identify functional mediators that regulate these key cellular programs in CRC, we developed an endogenous reporter system by genome-editing human CRC cell lines with knock-in fluorescent reporters at the SOX9 and KRT20 locus to report aberrant stem cell-like activity and differentiation, respectively, and then performed pooled genetic perturbation screens. Constructing a dual reporter system that simultaneously monitored aberrant stem cell-like and differentiation activity in the same CRC cell line improved our signal to noise discrimination.

View Article and Find Full Text PDF

Association between altered tryptophan metabolism, plasma aryl hydrocarbon receptor agonists, and inflammatory Chagas disease.

Front Immunol

January 2024

Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.

Introduction: Chagas disease causes a cardiac illness characterized by immunoinflammatory reactions leading to myocardial fibrosis and remodeling. The development of Chronic Chagas Cardiomyopathy (CCC) in some patients while others remain asymptomatic is not fully understood, but dysregulated inflammatory responses are implicated. The Aryl hydrocarbon receptor (AhR) plays a crucial role in regulating inflammation.

View Article and Find Full Text PDF

Proteasome Inhibitors in Multiple Myeloma: Biological Insights on Mechanisms of Action or Resistance Informed by Functional Genomics.

Hematol Oncol Clin North Am

April 2024

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA. Electronic address:

During the last 20 years, proteasome inhibitors have been a cornerstone for the therapeutic management of multiple myeloma (MM). This review highlights how MM research has evolved over time in terms of our understanding of the mechanistic basis for the pronounced clinical activity of proteasome inhibitors in MM, compared with the limited clinical applications of this drug class outside the setting of plasma cell dyscrasias.

View Article and Find Full Text PDF

Light exposure during sleep is bidirectionally associated with irregular sleep timing: The multi-ethnic study of atherosclerosis (MESA).

Environ Pollut

March 2024

Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston ,MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.

Exposure to light at night (LAN) may influence sleep timing and regularity. Here, we test whether greater light exposure during sleep (LEDS) is bidirectionally associated with greater irregularity in sleep onset timing in a large cohort of older adults in cross-sectional and short-term longitudinal (days) analyses. Light exposure and activity patterns, measured via wrist-worn actigraphy (ActiWatch Spectrum), were analyzed in 1933 participants with 6+ valid days of data in the Multi-Ethnic Study of Atherosclerosis (MESA) Exam 5 Sleep Study.

View Article and Find Full Text PDF

Introduction: People living with HIV (PLHIV) are characterized by functional reprogramming of innate immune cells even after long-term antiretroviral therapy (ART). In order to assess technical feasibility of omics technologies for application to larger cohorts, we compared multiple omics data layers.

Methods: Bulk and single-cell transcriptomics, flow cytometry, proteomics, chromatin landscape analysis by ATAC-seq as well as drug stimulation were performed in a small number of blood samples derived from PLHIV and healthy controls from the 200-HIV cohort study.

View Article and Find Full Text PDF

Gastroesophageal adenocarcinoma (GEA) is an aggressive malignancy with chromosomal instability (CIN). To understand adaptive responses enabling DNA damage response (DDR) and CIN, we analyzed matched normal, premalignant, and malignant gastric lesions from human specimens and a carcinogen-induced mouse model, observing activation of replication stress, DDR, and p21 in neoplastic progression. In GEA cell lines, expression of DDR markers correlated with ploidy abnormalities, such as number of high-level focal amplifications and whole-genome duplication (WGD).

View Article and Find Full Text PDF

Objective: Exposure to light at night (LAN) may influence sleep timing and regularity. Here, we test whether greater light exposure during sleep (LEDS) associates with greater irregularity in sleep onset timing in a large cohort of older adults.

Methods: Light exposure and activity patterns, measured via wrist-worn actigraphy (ActiWatch Spectrum), were analyzed in 1,933 participants with 6+ valid days of data in the Multi-Ethnic Study of Atherosclerosis (MESA) Exam 5 Sleep Study.

View Article and Find Full Text PDF

Background: Coronavirus disease 2019 (COVID-19) has permanently changed the world. Despite having been a pandemic for nearly 3 years, the mid- and long-term complications of this disease, including endocrine disorders, remain unclear. Our study aimed to evaluate the lasting effects of COVID-19 on the endocrine system 6 months after initial infection.

View Article and Find Full Text PDF
Article Synopsis
  • - The study highlights the challenge in creating targeted therapies for Multiple Myeloma (MM) due to the rarity of genetic abnormalities, with the common amplification of chromosome 1q (Amp1q) linked to poorer outcomes for patients.
  • - Researchers used large-scale screening methods to identify that MM patients with Amp1q have increased sensitivity to a combination of MCL1 and PI3K inhibitors, which could potentially lead to more effective treatments.
  • - Further analysis through single-cell RNA sequencing revealed differences in the PI3K pathway's activity between cancer cells with and without Amp1q, suggesting that targeting this pathway along with MCL1 could enhance treatment efficacy for affected patients.
View Article and Find Full Text PDF

Background: Therapeutically immunosuppressed transplant recipients exhibit attenuated responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines. To elucidate the kinetics and variant cross-protection of vaccine-induced antibodies in this population, we conducted a prospective longitudinal study in heart and lung transplant recipients receiving the SARS-CoV-2 messenger RNA (mRNA) 3-dose vaccination series.

Methods: We measured longitudinal serum antibody and neutralization responses against the ancestral and major variants of SARS-CoV-2 in SARS-CoV-2-uninfected lung (n = 18) and heart (n = 17) transplant recipients, non-lung-transplanted patients with cystic fibrosis (n = 7), and healthy controls (n = 12) before, during, and after the primary mRNA vaccination series.

View Article and Find Full Text PDF

Background: Developing a cure for HIV remains a global scientific priority. In 2022, the Females Rising through Education, Support and Health (FRESH) cohort launched an HIV cure-related trial involving an analytical treatment interruption (ATI) in Durban, South Africa.

Objectives: To explore community perspectives about HIV cure-related research.

View Article and Find Full Text PDF

Background And Purpose: Napping is a widespread practice worldwide and has in recent years been linked to increased abdominal adiposity. Lipase E or encodes the protein hormone-sensitive lipase (HSL), an enzyme that plays an important role in lipid mobilization and exhibits a circadian expression rhythm in human adipose tissue. We hypothesized that habitual napping may impact the circadian expression pattern of , which in turn may attenuate lipid mobilization and induce abdominal fat accumulation.

View Article and Find Full Text PDF

Clinical progress in multiple myeloma (MM), an incurable plasma cell (PC) neoplasia, has been driven by therapies that have limited applications beyond MM/PC neoplasias and do not target specific oncogenic mutations in MM. Instead, these agents target pathways critical for PC biology yet largely dispensable for malignant or normal cells of most other lineages. Here we systematically characterized the lineage-preferential molecular dependencies of MM through genome-scale clustered regularly interspaced short palindromic repeats (CRISPR) studies in 19 MM versus hundreds of non-MM lines and identified 116 genes whose disruption more significantly affects MM cell fitness compared with other malignancies.

View Article and Find Full Text PDF

Maintenance of peripheral tolerance by CD4Foxp3 regulatory T cells (Tregs) is essential for regulating autoreactive T cells. The loss of function of Foxp3 leads to autoimmune disease in both animals and humans. An example is the rare, X-linked recessive disorder known as IPEX (Immune Dysregulation, Polyendocrinopathy, Enteropathy X-linked) syndrome.

View Article and Find Full Text PDF

Background: Kidney transplant recipients are currently treated with nonspecific immunosuppressants that cause severe systemic side effects. Current immunosuppressants were developed based on their effect on T-cell activation rather than the underlying mechanisms driving alloimmune responses. Thus, understanding the role of the intragraft microenvironment will help us identify more directed therapies with lower side effects.

View Article and Find Full Text PDF

Hereditary cancer syndromes (HCS) account for 5~10% of all cancer diagnosis. Lynch syndrome (LS) is one of the most common HCS, caused by germline mutations in the DNA mismatch repair (MMR) genes. Even with prospective cancer surveillance, LS is associated with up to 50% lifetime risk of colorectal, endometrial, and other cancers.

View Article and Find Full Text PDF

Gastroesophageal adenocarcinoma (GEA) is an aggressive, often lethal, malignancy that displays marked chromosomal instability (CIN). To understand adaptive responses that enable CIN, we analyzed paired normal, premalignant, and malignant gastric lesions from human specimens and a carcinogen-induced mouse model, observing activation of replication stress, DNA damage response (DDR), and cell cycle regulator p21 in neoplastic progression. In GEA cell lines, expression of DDR markers correlated with ploidy abnormalities, including high-level focal amplifications and whole-genome duplication (WGD).

View Article and Find Full Text PDF

Anti-PD-1/PD-L1 agents have transformed the treatment landscape of advanced non-small cell lung cancer (NSCLC). To expand our understanding of the molecular features underlying response to checkpoint inhibitors in NSCLC, we describe here the first joint analysis of the Stand Up To Cancer-Mark Foundation cohort, a resource of whole exome and/or RNA sequencing from 393 patients with NSCLC treated with anti-PD-(L)1 therapy, along with matched clinical response annotation. We identify a number of associations between molecular features and outcome, including (1) favorable (for example, ATM altered) and unfavorable (for example, TERT amplified) genomic subgroups, (2) a prominent association between expression of inducible components of the immunoproteasome and response and (3) a dedifferentiated tumor-intrinsic subtype with enhanced response to checkpoint blockade.

View Article and Find Full Text PDF
Article Synopsis
  • The immune system protects the body from infections and tumors while maintaining balance, while the somatosensory nervous system gathers sensory info to help react to harmful situations.
  • These two systems can work together as an "integrated defense system," with nociceptors detecting harmful stimuli and influencing immune responses positively or negatively.
  • The review discusses the current knowledge of how nociceptors interact with myeloid cells of the innate immune system, especially in barrier tissues, and highlights ongoing questions in the rapidly evolving field of peripheral neuroimmunology.
View Article and Find Full Text PDF

Efficient isolation of rare B cells using next-generation antigen barcoding.

Front Cell Infect Microbiol

March 2023

Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States.

Article Synopsis
  • Efficiently isolating antigen-specific B cells can speed up the discovery of therapeutic monoclonal antibodies (mAbs) and improve vaccine development.
  • Traditional methods for mAb discovery are time-consuming and expensive, but new techniques in single-cell genomics enable the processing of thousands of cells at once.
  • The introduced method combines antigen barcoding and computational tools to analyze large numbers of B cells, successfully recovering thousands of mAbs, including rare precursors for key HIV-neutralizing antibodies.
View Article and Find Full Text PDF

Fetal Hemoglobin Regulation in Beta-Thalassemia.

Hematol Oncol Clin North Am

April 2023

Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Karp Family Research Laboratories, Boston Children's Hospital, 1 Blackfan Street, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA, USA. Electronic address:

β-thalassemia is caused by mutations that reduce β-globin production, causing globin chain imbalance, ineffective erythropoiesis, and consequent anemia. Increased fetal hemoglobin (HbF) levels can ameliorate the severity of β-thalassemia by compensating for the globin chain imbalance. Careful clinical observations paired with population studies and advances in human genetics have enabled the discovery of major regulators of HbF switching (i.

View Article and Find Full Text PDF

TGF-β in the microenvironment induces a physiologically occurring immune-suppressive senescent state.

Cell Rep

March 2023

Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Electronic address:

TGF-β induces senescence in embryonic tissues. Whether TGF-β in the hypoxic tumor microenvironment (TME) induces senescence in cancer and how the ensuing senescence-associated secretory phenotype (SASP) remodels the cellular TME to influence immune checkpoint inhibitor (ICI) responses are unknown. We show that TGF-β induces a deeper senescent state under hypoxia than under normoxia; deep senescence correlates with the degree of E2F suppression and is marked by multinucleation, reduced reentry into proliferation, and a distinct 14-gene SASP.

View Article and Find Full Text PDF