52 results match your criteria: "Marquette University and The Medical College of Wisconsin[Affiliation]"

Mesenchymal stem cell (MSC)-based bone tissue regeneration has gained significant attention due to the excellent differentiation capacity and immunomodulatory activity of MSCs. Enhancing osteogenesis regulation is crucial for improving the therapeutic efficacy of MSC-based regeneration. By utilizing the regenerative capacity of bone ECM and the functionality of nanoparticles, we recently engineered bone-based nanoparticles (BNPs) from decellularized porcine bones.

View Article and Find Full Text PDF

Contemporary injury tolerance of the lumbar spine for under-body blast references axial compression and bending moments in a limited range. Since injuries often occur in a wider range of flexion and extension with increased moment contribution, this study expands a previously proposed combined loading injury criterion for the lumbar spine. Fifteen cadaveric lumbar spine failure tests with greater magnitudes of eccentric loading were incorporated into an existing injury criterion to augment its applicability and a combined loading injury risk model was proposed by means of survival analysis.

View Article and Find Full Text PDF

The past five years have yielded impressive advancements in fully absorbable metal stent technology. The desired ultimate ability for such devices to treat a vascular stenosis without long-term device-related complications or impeding future treatment continues to evoke excitement in clinicians and engineers alike. Nowhere is the need for fully absorbable metal stents greater than in patients experiencing vascular anomalies associated with congenital heart disease (CHD).

View Article and Find Full Text PDF

Severity assessment for coarctation of the aorta (CoA) is challenging due to concomitant morphological anomalies (complex CoA) and inaccurate Doppler-based indices. Promising diagnostic performance has been reported for the continuous flow pressure gradient (CFPG), but it has not been studied in complex CoA. Our objective was to characterize the effect of complex CoA and associated hemodynamics on CFPG in a clinical cohort.

View Article and Find Full Text PDF

Introduction: Clinical tools have been widely used in the diagnosis, description, and monitoring the progression of retinitis pigmentosa (RP); however, many of these methods have inherently low sensitivity and specificity, and significant photoreceptor disruption can occur before RP progression has clinically manifest. Adaptive optics scanning light ophthalmoscopy (AOSLO) has shown promise as a powerful tool for assessing photoreceptor disruption both structurally and functionally due to its increased resolution.

Methods: Here we assess photoreceptor structure and function at the cellular level through AOSLO by acquiring intensity based optoretinography (iORG) in 15 individuals with no reported retinal pathology and 7 individuals with a prior clinical diagnosis of RP.

View Article and Find Full Text PDF

Bone related diseases such as osteoporosis, osteoarthritis, metastatic bone cancer, osteogenesis imperfecta, and Paget's disease, are primarily treated with pharmacologic therapies that often exhibit limited efficacy and substantial side effects. Bone injuries or fractures are primarily repaired with biocompatible materials that produce mixed results in sufficiently regenerating healthy and homogenous bone tissue. Each of these bone conditions, both localized and systemic, use different strategies with the same goal of achieving a healthy and homeostatic bone environment.

View Article and Find Full Text PDF

Background: Understanding the role of adherence to home exercise programs for survivors of stroke is critical to ensure patients perform prescribed exercises and maximize effectiveness of recovery.

Methods: Survivors of hemiparetic stroke with impaired motor function were recruited into a 7-day study designed to test the utility and usability of a low-cost wearable system and progressive-challenge cued exercise program for encouraging graded-challenge exercise at-home. The wearable system comprised two wrist-worn MetaMotionR+ activity monitors and a custom smartphone app.

View Article and Find Full Text PDF

The fovea is a highly specialized region of the central retina, defined by an absence of inner retinal layers and the accompanying vasculature, an increased density of cone photoreceptors, a near absence of rod photoreceptors, and unique private-line photoreceptor to midget ganglion cell circuitry. These anatomical specializations support high-acuity vision in humans. While direct study of foveal shape and size is routinely performed using optical coherence tomography, examination of the other anatomical specializations of the fovea has only recently become possible using an array of adaptive optics (AO)-based imaging tools.

View Article and Find Full Text PDF

Understanding post-stroke changes in skeletal muscle oxidative metabolism and microvascular reactivity could help create therapeutic targets that optimize rehabilitative interventions. Due to disuse atrophy, we hypothesized that basal muscle oxygen consumption rate and microvascular endothelial function would be impaired in the tibialis anterior (TA) muscle of the affected leg of chronic stroke survivors compared with the nonaffected leg and versus matched controls. Fifteen chronic stroke survivors (10 females) and 15 matched controls (9 females) completed this study.

View Article and Find Full Text PDF

Background: Coarctation of the aorta (CoA) often leads to hypertension posttreatment. Evidence is lacking for the current >20 mm Hg peak-to-peak blood pressure (BP) gradient (BPGpp) guideline, which can cause aortic thickening, stiffening, and dysfunction. This study sought to find the BPGpp severity and duration that avoid persistent dysfunction in a preclinical model and test if predictors translate to hypertension status in patients with CoA.

View Article and Find Full Text PDF

Objective: Mucosal decongestion with nasal sprays is a common treatment for nasal airway obstruction. However, the impact of mucosal decongestion on nasal aerodynamics and the physiological mechanism of nasal airflow sensation are incompletely understood. The objective of this study is to compare nasal airflow patterns in nasal airway obstruction (NAO) patients with and without mucosal decongestion and nondecongested healthy subjects.

View Article and Find Full Text PDF

Objective: Endoscopy is routinely used to diagnose obstructive airway diseases. Currently, endoscopy is only a visualization technique and does not allow quantification of airspace cross-sectional areas (CSAs). This pilot study tested the hypothesis that CSAs can be accurately estimated from depth maps created from virtual endoscopy videos.

View Article and Find Full Text PDF

A Systems Approach to Biomechanics, Mechanobiology, and Biotransport.

J Biomech Eng

April 2024

Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742.

The human body represents a collection of interacting systems that range in scale from nanometers to meters. Investigations from a systems perspective focus on how the parts work together to enact changes across spatial scales, and further our understanding of how systems function and fail. Here, we highlight systems approaches presented at the 2022 Summer Biomechanics, Bio-engineering, and Biotransport Conference in the areas of solid mechanics; fluid mechanics; tissue and cellular engineering; biotransport; and design, dynamics, and rehabilitation; and biomechanics education.

View Article and Find Full Text PDF

Background: Few studies have examined changes in skeletal muscle physiology post-stroke. This study examined changes in tissue oxygen saturation (StO) of the vastus lateralis (VL) muscle of stroke survivors and age-matched control participants during maximal and submaximal isometric contractions of the knee extensor muscles.

Objectives: We hypothesized that tissue oxygen desaturation (ΔStO) during knee extensor muscle contractions would be less in the VL in the paretic vs.

View Article and Find Full Text PDF

Spatial mapping of posture-dependent resistance to passive displacement of the hypertonic arm post-stroke.

J Neuroeng Rehabil

December 2023

Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Engineering Hall, Rm 342, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA.

Background: Muscles in the post-stroke arm commonly demonstrate abnormal reflexes that result in increased position- and velocity-dependent resistance to movement. We sought to develop a reliable way to quantify mechanical consequences of abnormal neuromuscular mechanisms throughout the reachable workspace in the hemiparetic arm post-stroke.

Methods: Survivors of hemiparetic stroke (HS) and neurologically intact (NI) control subjects were instructed to relax as a robotic device repositioned the hand of their hemiparetic arm between several testing locations that sampled the arm's passive range of motion.

View Article and Find Full Text PDF

Background: Coarctation of the aorta (CoA) often leads to hypertension (HTN) post-treatment. Evidence is lacking for the current >20 mmHg peak-to-peak blood pressure gradient (BPGpp) guideline, which can cause aortic thickening, stiffening and dysfunction. This study sought to find the BPGpp severity and duration that avoid persistent dysfunction in a preclinical model, and test if predictors translate to HTN status in CoA patients.

View Article and Find Full Text PDF

Aims: Severity assessment for coarctation of the aorta (CoA) is challenging due to concomitant morphological anomalies (complex CoA) and inaccurate Doppler-based indices. Promising diagnostic performance has been reported for the continuous flow pressure gradient (CFPG), but it has not been studied in complex CoA. Our objective was to characterize the effect of complex CoA and associated hemodynamics on CFPG in a clinical cohort.

View Article and Find Full Text PDF

Background: The constrained one-step spectral CT Image Reconstruction method (cOSSCIR) has been developed to estimate basis material maps directly from spectral CT data using a model of the polyenergetic x-ray transmissions and incorporating convex constraints into the inversion problem. This 'one-step' approach has been shown to stabilize the inversion in the case of photon-counting CT, and may provide similar benefits to dual-kV systems that utilize integrating detectors. Since the approach does not require the same rays be acquired for every spectral measurement, cOSSCIR can apply to dual energy protocols and systems used clinically, such as fast and slow kV switching systems and dual source scanning.

View Article and Find Full Text PDF

Recent advances in wearable sensors and computing have made possible the development of novel sensory augmentation technologies that promise to enhance human motor performance and quality of life in a wide range of applications. We compared the objective utility and subjective user experience for two biologically inspired ways to encode movement-related information into supplemental feedback for the real-time control of goal-directed reaching in healthy, neurologically intact adults. One encoding scheme mimicked visual feedback encoding by converting real-time hand position in a Cartesian frame of reference into supplemental kinesthetic feedback provided by a vibrotactile display attached to the non-moving arm and hand.

View Article and Find Full Text PDF

Stent-induced mechanical stimuli cause pathophysiological responses in the coronary artery post-treatment. These stimuli can be minimized through choice of stent, size, and deployment strategy. However, the lack of target lesion material characterization is a barrier to further personalizing treatment.

View Article and Find Full Text PDF

Coarctation of the aorta (CoA) is one of the most common congenital cardiovascular diseases. CoA patients frequently undergo surgical repair, but hypertension (HTN) is still common. The current treatment guideline has revealed irreversible changes in structure and function, yet revised severity guidelines have not been proposed.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigated tissue oxygen saturation (StO) in the vastus lateralis (VL) muscles of stroke survivors during a graded exercise test (GXT), hypothesizing that the paretic VL would have less reduction in StO than the non-paretic VL.
  • Twenty-six chronic stroke survivors underwent a GXT while StO was measured using near infrared spectroscopy; results showed no initial difference in StO at rest between the paretic and non-paretic VL, but a significantly greater decrease in StO during the GXT in the non-paretic VL.
  • The findings indicate that oxygen desaturation is less pronounced in the paretic VL during intense exercise, and highlight a positive correlation between the oxygen desaturation response in the
View Article and Find Full Text PDF

While current clinical utilization of large vascular grafts for vascular transplantation is encouraging, tissue engineering of small grafts still faces numerous challenges. This study aims to investigate the feasibility of constructing a small vascular graft from decellularized amniotic membranes (DAMs). DAMs were rolled around a catheter and each of the resulting grafts was crosslinked with (a) 0.

View Article and Find Full Text PDF

The C-type natriuretic peptide receptor (NPRC) is expressed in many cell types and binds all natriuretic peptides with high affinity. Ligand binding results in the activation or inhibition of various intracellular signaling pathways. Although NPRC ligand binding has been shown to regulate various ion channels, the regulation of endothelial sodium channel (EnNaC) activity by NPRC activation has not been studied.

View Article and Find Full Text PDF

Botulinum NeuroToxin-A (BoNT-A) relieves muscle spasticity and increases range of motion necessary for stroke rehabilitation. Determining the effects of BoNT-A therapy on brain neuroplasticity could help physicians customize its use and predict its outcome. The purpose of this study was to investigate the effects of Botulinum Toxin-A therapy for treatment of focal spasticity on brain activation and functional connectivity.

View Article and Find Full Text PDF