6 results match your criteria: "Margarita Salas Center of Biological Research[Affiliation]"

In vivo, microspores in the anthers follow the gametophytic development pathway, culminating in the formation of pollen grains. Conversely, in vitro, under stress treatments, microspores can be reprogrammed into totipotent cells, initiating an embryogenic pathway that produces haploid and double-haploid embryos, which are important biotechnological tools in plant breeding. There is growing evidence that epigenetic reprogramming occurs during microspore embryogenesis through DNA methylation, but less is known about the role of histone modifications.

View Article and Find Full Text PDF

In vitro plant embryogenesis and microcallus formation are systems which are required for plant regeneration, a process during which cell reprogramming and proliferation are critical. These systems offer many advantages in breeding programmes, such as doubled-haploid production, clonal propagation of selected genotypes, and recovery of successfully gene-edited or transformed plants. However, the low proportion of reprogrammed cells in many plant species makes these processes highly inefficient.

View Article and Find Full Text PDF

Plant in vitro regeneration systems, such as somatic embryogenesis, are essential in breeding; they permit propagation of elite genotypes, production of doubled-haploids, and regeneration of whole plants from gene editing or transformation events. However, in many crop and forest species, somatic embryogenesis is highly inefficient. We report a new strategy to improve in vitro embryogenesis using synthetic small molecule inhibitors of mammalian glycogen synthase kinase 3β (GSK-3β), never used in plants.

View Article and Find Full Text PDF

Suppression of Metacaspase- and Autophagy-Dependent Cell Death Improves Stress-Induced Microspore Embryogenesis in Brassica napus.

Plant Cell Physiol

February 2021

Microbial and Plant Biotechnology Department, Pollen Biotechnology of Crop Plants Laboratory, Margarita Salas Center of Biological Research, CIB Margarita Salas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.

Microspore embryogenesis is a biotechnological process that allows us to rapidly obtain doubled-haploid plants for breeding programs. The process is initiated by the application of stress treatment, which reprograms microspores to embark on embryonic development. Typically, a part of the microspores undergoes cell death that reduces the efficiency of the process.

View Article and Find Full Text PDF

Advances in Plant Regeneration: Shake, Rattle and Roll.

Plants (Basel)

July 2020

Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain.

Some plant cells are able to rebuild new organs after tissue damage or in response to definite stress treatments and/or exogenous hormone applications. Whole plants can develop through de novo organogenesis or somatic embryogenesis. Recent findings have enlarged our understanding of the molecular and cellular mechanisms required for tissue reprogramming during plant regeneration.

View Article and Find Full Text PDF