3 results match your criteria: "Manchester Metropolitan University Chester Street Manchester M1 5GD UK c.banks@mmu.ac.uk +44 (0)1612471196.[Affiliation]"

The first report of conductive recycled polyethylene terephthalate glycol (rPETg) for additive manufacturing and electrochemical applications is reported herein. Graphene nanoplatelets (GNP), multi-walled carbon nanotubes (MWCNT) and carbon black (CB) were embedded within a recycled feedstock to produce a filament with lower resistance than commercially available conductive polylactic acid (PLA). In addition to electrical conductivity, the rPETg was able to hold >10 wt% more conductive filler without the use of a plasticiser, showed enhanced temperature stability, had a higher modulus, improved chemical resistance, lowered levels of solution ingress, and could be sterilised in ethanol.

View Article and Find Full Text PDF

We present the facile synthesis of Ni/NiO nanocomposites, a solution combustion methodology, where the composition of metallic Ni within NiO is controlled by varying the annealing time, from 4 minutes up to 8 hours. The various Ni/NiO nanocomposites are studied electrically wiring them upon screen-printed graphite macroelectrodes by physical deposition. Subsequently their electrochemical activity, towards the oxygen evolution reaction (OER), is assessed within (ultra-pure) alkaline media (1.

View Article and Find Full Text PDF