760 results match your criteria: "Maj Institute of Pharmacology[Affiliation]"

The many faces of DGAT1.

Life Sci

December 2024

Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland; Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland. Electronic address:

Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a multifaced enzyme with a wide spectrum of substrates, from lipids through waxes to retinoids, which makes it an interesting therapeutic target. DGAT1 inhibitors are currently at various stages of preclinical and clinical trials, mostly related to metabolic diseases. Interestingly, in recent years, a growing amount of research has shown the influence of DGAT1 on immune cell metabolism and functions, highlighting its important role during infections and tumorigenesis.

View Article and Find Full Text PDF

Anxiety is a severe social problem. It is a disease entity that occurs alone or accompanies other diseases such as depression, phobia, or post-traumatic stress disorder. Our earlier studies demonstrated that blockage of arachidonic acid (AA) pathway via inhibition of cyclooxygenase-2 (COX-2) enzyme can modulate mGluRs-induced anxiety-like behavior.

View Article and Find Full Text PDF

In this study, we selected 12 guanidine derivatives from the previously described ligand library and determined their affinity at histamine H and H receptors (HR and HR, respectively). Moreover, we also checked their intrinsic activity toward HR and muscarinic M, M, and M receptors (MR, MR, and MR, respectively). Since ADS1017 has been proved to be the most selective and highly potent H antagonist in our series, we chose it as the lead structure for further biological evaluation.

View Article and Find Full Text PDF

L-arginine derivatives (ADMA, SDMA, NMMA) are endogenous inhibitors of nitric oxide (NO֗) production, which is essential in critical brain processes including blood-brain barrier (BBB) integrity and long-term potentiation (LTP). ADMA and NMMA are degraded by dimethylarginine dimethylaminohydrolase 1 (DDAH1) and protein arginine methyltransferase 5 (PRMT5) is an emerging epigenetic enzyme that mainly represses transcription of target genes via symmetric dimethylation of arginine residues. There is no data concerning the impact of metabotropic glutamate receptors (mGlu) ligands on this aspect of brain physiology.

View Article and Find Full Text PDF

Background: Preclinical and clinical studies have shown that dietary zinc deficiency can lead to symptoms similar to those observed in major depressive disorder (MDD). However, the underlying molecular mechanisms remain unclear. To investigate these mechanisms, we examined proteomic changes in the prefrontal cortex (PFC) and hippocampus (HP) of rats, two critical brain regions implicated in the pathophysiology of depression.

View Article and Find Full Text PDF

Rationale: Due to the numerous limitations of ketamine as a rapid-acting antidepressant drug (RAAD), research is still being conducted to find an effective and safe alternative to this drug. Recent studies indicate that the partial mGlu receptor negative allosteric modulator (NAM), 2-(2-(3-methoxyphenyl)ethynyl)-5-methylpyridine (M-5MPEP), has therapeutic potential as an antidepressant.

Objectives: The study aimed to investigate the potential rapid antidepressant-like effect of M-5MPEP in a mouse model of depression and to determine the mechanism of this action.

View Article and Find Full Text PDF

Assessing the effects of 5-HT and 5-HT receptor antagonists on DOI-induced head-twitch response in male rats using marker-less deep learning algorithms.

Pharmacol Rep

November 2024

Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.

Article Synopsis
  • The study investigates a new, marker-less method using deep learning to track head-twitch responses in rodents, traditionally observed by humans.
  • High-speed videos were analyzed with DeepLabCut and SimBA, showing strong agreement with human counts while evaluating the effects of the psychedelic DOI.
  • Results confirmed that certain 5-HT receptor antagonists can reduce head-twitch responses, supporting the idea that this behavior is specific to serotonergic activity, and demonstrated the effectiveness of the automated tracking tools for research purposes.
View Article and Find Full Text PDF

Background: Preclinical and clinical studies suggest that zinc deficiency and chronic stress contribute to depressive symptoms. Our study explores the intricate relationship between these factors by examining their physiological and biochemical effects across various organs in C57Bl/6J mice.

Methods: The mice were divided into four groups: control, chronic restraint stress for 3 weeks, a zinc-restricted diet (<3 mg/kg) for 4 weeks, and a combination of stress and zinc restriction.

View Article and Find Full Text PDF

Train and Reprogram Your Brain: Effects of Physical Exercise at Different Stages of Life on Brain Functions Saved in Epigenetic Modifications.

Int J Mol Sci

November 2024

Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.

Article Synopsis
  • Physical exercise significantly boosts brain plasticity, memory, cognition, and mood, with ongoing research exploring its underlying mechanisms.
  • Various substances, including hormones and neurotrophins, are believed to play a role, but the long-lasting benefits of exercise, which may be passed to future generations, are thought to arise from epigenetic changes that affect gene expression.
  • The review discusses how these epigenetic modifications from regular exercise aid in preventing and treating mental disorders and contribute to healthier aging.
View Article and Find Full Text PDF

Prenatal excess of glucocorticoids (GCs) is considered to be one of the highly impacting factors contributing to depression development. Although GCs are crucial for normal fetal development and their administration (mainly dexamethasone, DEX) is a life-saving procedure for those at risk of preterm delivery, exposure to excess levels of GCs during pregnancy can yield detrimental consequences. Therefore, we aimed to systematically investigate the brain molecular alterations triggered by prenatal DEX administration.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effects of astaxanthin on nociceptive transmission in a mouse model of painful diabetic neuropathy, aiming to assess its potential as a treatment option.
  • Researchers conducted tests with astaxanthin administered through different methods and doses, finding that it effectively reduces hypersensitivity in both male and female mice.
  • The results suggest that astaxanthin not only provides significant analgesic effects on its own but also may enhance pain relief when used with morphine, highlighting its promise for future clinical applications in diabetic neuropathy treatment.
View Article and Find Full Text PDF

Stress resilience is the ability of neuronal networks to maintain their function despite the stress exposure. Using a mouse model we investigate stress resilience phenomenon. To assess the resilient and anhedonic behavioral phenotypes developed after the induction of chronic unpredictable stress, we quantitatively characterized the structural and functional plasticity of excitatory synapses in the hippocampus using a combination of proteomic, electrophysiological, and imaging methods.

View Article and Find Full Text PDF

The rapid decrease of light intensity is a potent stimulus of rats' activity. The nature of this activity, including the character of social behavior and the composition of concomitant ultrasonic vocalizations (USVs), is unknown. Using deep learning algorithms, this study aimed to examine the social life of rat pairs kept in semi-natural conditions and observed during the transitions between light and dark, as well as between dark and light periods.

View Article and Find Full Text PDF

Background: Our previous studies indicated that changes in the functioning of the brain glutamatergic system involving the NMDA receptor may affect cytochrome P450 2D (CYP2D) in the brain. Since CYP2D may contribute to the metabolism of neurotransmitters and neurosteroids engaged in the pathology and pharmacology of neuropsychiatric diseases, in the present work we have investigated the effect of compound LY354740, an agonist of glutamatergic metabotropic receptor mGlu, on brain and liver CYP2D.

Methods: The activity (high performance liquid chromatography with fluorescence detection) and protein levels (Western blotting) of CYP2D were measured in the microsomes from the liver and different brain areas of male Wistar rats after 5 day-treatment with LY354740 (10 mg/kg ip).

View Article and Find Full Text PDF

Background: Maternal high-fat diet (HFD) during pregnancy and lactation induces depression- like phenotype and provokes myelin-related changes in rat offspring in the prefrontal cortex (PFCTX), which persist even to adulthood.

Objective: Due to the plasticity of the developing brain, it was decided to analyze whether depressionlike phenotype and myelin-related changes in the early lifetime induced by maternal HFD (60% energy from fat) could be reversed by the omega-3 fatty acid-enriched diet (Ω3D) given from the postweaning period until adulthood (63rd day of life) in offspring.

Methods: We analyzed the effect of post-weaning Ω3D on the depressive-like phenotype (assessed by the forced swimming test) and myelin-related changes (measured using RT-qPCR, ELISA, and immunofluorescence staining) in the PFCTX of adult offspring.

View Article and Find Full Text PDF

Background: The study examined the effects of 5-HT receptor activation on GABAergic transmission within the dentate gyrus and plasticity at the glutamatergic perforant path input.

Methods: Immunofluorescence imaging was performed using transverse hippocampal slices from transgenic mice expressing green fluorescent protein (GFP) under the Htr7 promoter. This was followed by whole-cell patch clamp electrophysiological recordings assessing the effects of pharmacologically activating 5-HT receptors on spontaneous inhibitory postsynaptic currents recorded from dentate granule cells and hilar mossy cells-two glutamatergic neuron types present in the dentate gyrus.

View Article and Find Full Text PDF

The impact of voluntary wheel-running exercise on hippocampal neurogenesis and behaviours in response to nicotine cessation in rats.

Psychopharmacology (Berl)

December 2024

Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland.

Rationale: The literature indicates that nicotine exposure or its discontinuation impair adult hippocampal neurogenesis in rats, though the impact of exercise on this process remains unclear. We have previously shown that disturbances in the number of doublecortin (DCX, a marker of immature neurons)-positive (DCX) cells in the dentate gyrus (DG) of the hippocampus during nicotine deprivation may contribute to a depression-like state in rats.

Objectives: This study aimed to investigate the effect of running on hippocampal neurogenesis, depression-like symptoms, and drug-seeking behaviour during nicotine deprivation.

View Article and Find Full Text PDF

Research has shown that obesity is a low-grade inflammatory disease that is often associated with comorbidities, such as diabetes and chronic pain. Recent data have indicated that chemokines may play a role in these conditions due to their pronociceptive and chemotactic properties, which promote hypersensitivity and inflammation. Accumulating evidence suggests that CCR2, CCR5, and their ligands (CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11 CCL12, and/or CCL13) play a role in rodent models of pain and obesity, as well as in patients with diabetes and obesity.

View Article and Find Full Text PDF

We describe the design, synthesis and structure-activity relationship of a novel series of 1-(4-(7-azaindole)-3,6-dihydropyridin-1-yl)alkyl-3-(1-indol-3-yl)pyrrolidine-2,5-dione derivatives with combined effects on the serotonin (5-HT) and dopamine (D) receptors and the serotonin (5-HT), noradrenaline (NA), and dopamine (DA) transporters as multi-target directed ligands for the treatment of depression. All of the tested compounds demonstrated good affinity for the serotonin transporter (SERT). Among them, compounds and emerged as the lead candidates because of their promising pharmacological profile based on in vitro studies.

View Article and Find Full Text PDF

The disturbances in neurotrophic support are thought to be one of the main causes of depression, which depend not only on the neurotrophins themselves but also on the molecules regulating their synthesis and effector functions. One such molecule is cAMP responsive element binding protein (CREB), which role in depression and antidepressant drugs mechanism of action has been extensively studied. However, CREB's effects vary depending on brain structure, necessitating specific transgenic models for studying its function.

View Article and Find Full Text PDF
Article Synopsis
  • The Serotonin 5-HT receptor (5-HTR) is a new focus for treating central nervous system disorders, but no selective agents have been approved yet despite promising preclinical results.
  • Researchers have developed highly potent and selective hydantoin-derived 5-HTR antagonists with proven antidepressant effects and good drug profiles, although initial tests used racemates.
  • This study achieved the synthesis of pure hydantoin-derived 5-HTR agents, confirmed their structure with X-ray analysis, and revealed important interactions affecting receptor affinity, suggesting that other factors beyond 5-HTR action influence their antidepressant and anxiolytic effects.
View Article and Find Full Text PDF

Neuro- and vasoprotective potential of neuropeptide Y Y2 receptor agonist, NPY13-36, against transient focal cerebral ischemia in spontaneously hypertensive rats.

Neuroscience

December 2024

Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, A. Pawiński Str. 5, 02‑106 Warsaw, Poland. Electronic address:

Numerous in vitro and in vivo experimental studies indicate that neuropeptide Y Y2 receptors (Y2R) are potential targets for neuroprotective therapy, including neuroprotection against ischemic stroke in healthy rats. Since stroke in humans is typically associated with comorbidities and long-term hypertension is the most common comorbidity leading to stroke, this study aimed to assess the neuroprotective potential of the Y2R agonist NPY13-36 in the rats with essential hypertension (SHR) subjected to 90 min middle cerebral artery suture occlusion with subsequent reperfusion (MCAOR). The cerebrocortical microflow in the ischemic focus and penumbra was continuously monitored with a Laser-Doppler flowmeter.

View Article and Find Full Text PDF