61 results match your criteria: "Madan Mohan Malaviya University of Technology[Affiliation]"

High temperature QDs organization and re-crystallization in glass supported MgO QDs doped PMMA film.

Sci Rep

January 2025

Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P, India.

Article Synopsis
  • The study focuses on creating composite films of poly (methylmethacrylate) (PMMA) blended with magnesium oxide quantum dots (MgO QDs) at varying concentrations, and the films were annealed at 130°C for different durations to observe changes in their properties.
  • Analysis revealed that the initial crystallinity of the PMMA films decreased with annealing but slightly improved with the diffusion and coalescence of MgO QDs, leading to the formation of larger clusters that influenced the films' structural properties.
  • The research highlights the significance of temperature and molecular forces in the evolution of the film's morphology and stability, demonstrating unique energy dissipation mechanisms and the complex interplay of inter- and intra
View Article and Find Full Text PDF

Context: Electrochemical devices such as solid oxide fuel cells (SOFCs) allow the direct transformation of fuel's chemical energy into electrical power. Even though YSZ electrolyte-based conventional SOFCs are widely used in both laboratories and on a commercial scale, developing alternative ion-conducting electrolytes is crucial for enhancing SOFC performance at lower operating temperatures. In this work, we conducted a thorough computational analysis on the characteristics of Sr- and Mg-doped superior oxide ion conductors.

View Article and Find Full Text PDF

Nicotinamide Adenine Dinucleotide Phosphate (NAD(P)H) plays an important role in numerous biologically significant redox reactions. The photochemical restoration of its oxidized form (NAD(P)) under physiological conditions is intriguing in the context of integrated photo and catalysis. Herein, we report the functionalized graphitic carbon-based solar light active photocatalyst by doping boron and fluorine in the native graphitic carbon nitride (GCN) (nonfunctionalized) for the regeneration of enzymatically visible light active coenzyme and in photo-acetalization reactions.

View Article and Find Full Text PDF

Metro trains have non-linear load characteristics, which means that the power sent to them gets distorted. Problems are caused by changes in power, swells, harmonics, and other disturbances. In this research, an artificial intelligence-driven control method was used on a unified power quality conditioner (UPQC) to help reduce power quality problems and improve power quality.

View Article and Find Full Text PDF

SignEEG v1.0: Multimodal Dataset with Electroencephalography and Hand-written Signature for Biometric Systems.

Sci Data

July 2024

Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Embedded Intelligent Systems LAB, Luleå, Sweden.

Handwritten signatures in biometric authentication leverage unique individual characteristics for identification, offering high specificity through dynamic and static properties. However, this modality faces significant challenges from sophisticated forgery attempts, underscoring the need for enhanced security measures in common applications. To address forgery in signature-based biometric systems, integrating a forgery-resistant modality, namely, noninvasive electroencephalography (EEG), which captures unique brain activity patterns, can significantly enhance system robustness by leveraging multimodality's strengths.

View Article and Find Full Text PDF

Elevated global pollution level is the prime reason that contributes to the onset of various harmful health diseases. The products of Biginelli reaction are enormously used in the pharmaceutical industry as they have antiviral, antibacterial, and calcium channel modulation abilities. This work reports a novel eosin Y sensitized boron graphitic carbon nitride (EY-Bg-CN) as a photocatalyst that efficiently produced 3,4-dihydropyrimidine-2-(1H)-one by the Biginelli reaction of benzaldehyde, urea, and methyl acetoacetate.

View Article and Find Full Text PDF

We performed high-level ab initio quantum chemical calculations, incorporating higher-order excitations, spin-orbit coupling (SOC), and the Gaunt interaction, to calculate the electron affinities (EAs) of alkaline earth (AE) metal atoms (Ca, Sr, Ba, and Ra), which are notably small. The coupled-cluster singles and doubles with perturbative triples [CCSD(T)] method is insufficient to accurately calculate the EAs of AE metal atoms. Higher-order excitations proved crucial, with the coupled-cluster singles, doubles, and triples with perturbative quadruples [CCSDT(2)Q] method effectively capturing dynamic electron correlation effects.

View Article and Find Full Text PDF

Carbon dioxide (CO) conversion into value-added chemicals/fuels by utilizing solar energy is a sustainable way to mitigate our dependence on fossil fuels and stimulate a carbon-neutral economy. However, the efficient and affordable conversion of CO is still an ongoing challenge. Here, we report an interfacially synthesized visible-light-active Ni(II)-integrated covalent organic frameworks (TaTpBpy-Ni COFs) film as a photocatalyst for efficient CO conversion into carboxylic acid under ambient conditions.

View Article and Find Full Text PDF

Urinary Tract Infection (UTI) is a common bacterial infection that can affect various parts of the urinary system, with symptoms including frequent urination, painful urination, and lower back pain. UTIs are more common in women due to their shorter urethra, and they can lead to serious complications if left untreated. Vaginitis is an inflammation or infection of the vagina caused by factors like bacteria, fungi (Candida), or protozoa (Trichomonas).

View Article and Find Full Text PDF

The need for sunlight chemical renewal and contemporary organic transformation has fostered the advancement of environmentally friendly photocatalytic techniques. For the first time, we report on the novel crafting of a bright future with selenium-infused Eosin-B (Se-E-B) nanocomposite photocatalysts in this work. The Se-E-B nanocomposite materials were created using a hydrothermal process for solar chemical regeneration and organic transformation under visible light.

View Article and Find Full Text PDF

In our present work, an explicit crosslinked thermo-responsive hydrogel platform has been developed, by using polyacrylamide (PAAm), poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(cyclohexyl methacrylate) (PCHMA), and then coupled with urease to yield bioconjugates (BCs). Synergic effect of these polymer units provides thermoresponsive nature, optimum crosslinking with desired swelling behaviour, and stability and improved catalytic to Urease in the resultant BCs. Synthesis of the terpolymer has been achieved by employing HEMA (monomer as well as crosslinker), instead of using the conventional crosslinkers, through free radical solution polymerization technique.

View Article and Find Full Text PDF

Continued improvements in living standards and the economic well-being in the megacities have led to a huge surge in vehicular density. The worst environmental outcome of the same has been persistent unsafe urban air quality, thanks to vehicular emission. Further, the existing inspection and maintenance programs, conceived to check such emission remain largely ineffective, particularly in developing countries.

View Article and Find Full Text PDF

Applications of Bioengineered Polymer in the Field of Nano-Based Drug Delivery.

ACS Omega

January 2024

Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India.

The most favored route of drug administration is oral administration; however, several factors, including poor solubility, low bioavailability, and degradation, in the severe gastrointestinal environment frequently compromise the effectiveness of drugs taken orally. Bioengineered polymers have been developed to overcome these difficulties and enhance the delivery of therapeutic agents. Polymeric nanoparticles, including carbon dots, fullerenes, and quantum dots, have emerged as crucial components in this context.

View Article and Find Full Text PDF

A solvent-free sulfur-bridge-eosin-Y (SBE-Y) polymeric framework photocatalyst was prepared for the first time through an in situ thermal polymerization route using elemental sulfur (S) as a bridge. The addition of a sulfur bridge to the polymeric framework structure resulted in an allowance of the harvesting range of eosin-Y (E-Y) for solar light. This shows that a wider range of solar light can be used by the bridge material's photocatalytic reactions.

View Article and Find Full Text PDF

The photocatalytic oxidation and generation/regeneration of amines to imines and leucodopaminechrome (LDC)/NADH are subjects of intense interest in contemporary research. Imines serve as crucial intermediates for the synthesis of solar fuels, fine chemicals, agricultural chemicals, and pharmaceuticals. While significant progress has been made in developing efficient processes for the oxidation and generation/regeneration of secondary amines, the oxidation of primary amines has received comparatively less attention until recently.

View Article and Find Full Text PDF

Sulfur-doped Eosin-B (SDE-B) photocatalysts were synthesized for the first time utilizing sublimed sulfur (S) as a dopant in an in situ thermal copolymerization technique. Sulfur doping not only increased Eosin-B (E-B) absorption range for solar radiation but also improved fixation and oxygenation capabilities. The doped sulfur bridges the S-S bond by substituting for the edge bromine of the E-B bond.

View Article and Find Full Text PDF

Nano vs Resistant Tuberculosis: Taking the Lung Route.

AAPS PharmSciTech

December 2023

Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.

Tuberculosis (TB) is among the top 10 infectious diseases worldwide. It is categorized among the leading killer diseases that are the reason for the death of millions of people globally. Although a standardized treatment regimen is available, non-adherence to treatment has increased multi-drug resistance (MDR) and extensive drug-resistant (XDR) TB development.

View Article and Find Full Text PDF

Diabetic retinopathy is a common complication of diabetes that affects the eyes and can lead to severe vision loss or blindness if left untreated. Chronic hyperglycemia destroys the blood vessels in the retina, resulting in diabetic retinopathy. The damage can lead to leakage of fluid and blood into the retina, causing edema, hemorrhages, and ischemia.

View Article and Find Full Text PDF

The combination of excellent electronic properties and thermal stability positions orange-derived graphene quantum dots (GQDs) as promising materials for solar light-based applications. Researchers are actively exploring their potential in fields such as photovoltaics, photocatalysis, optoelectronics, and energy storage. Their abundance, cost-effectiveness, and eco-friendly nature further contribute to their growing relevance in cutting-edge scientific research.

View Article and Find Full Text PDF

Diabetes is a chronic metabolic disease affecting millions worldwide. It is characterized by a lack of insulin production or impaired insulin function, leading to elevated blood glucose levels. Conventional treatment methods for diabetes management typically include lifestyle changes and medications.

View Article and Find Full Text PDF

One of the most important health problems in the world today is cancer. The World Health Organization (WHO) reported that it results in 8.9 million deaths annually.

View Article and Find Full Text PDF

Effects of different biofuels and their mixtures with diesel fuel on diesel engine performance and exhausts.

Sci Total Environ

December 2023

School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang, Vietnam. Electronic address:

In this study, a compression ignition engine that ran on recycled used cooking oil (RUCO), Jatropha curcas (JC), Pongamia Pinnata (PP), and petroleum diesel fuel (PDF) was investigated for its energy, performance, and exhaust emissions. The 20 % by volume RUCO, JC, and PP biofuel mix with PDF is taken. According to the American Society for Testing and Material (ASTM) standard, the blend qualities are evaluated.

View Article and Find Full Text PDF

Indeed, the development of ecologically benign molecular fabrication methods for highly efficient graphene quantum dots-based photocatalysts is of great significant. Graphene quantum dots-based photocatalysts have promising applications in various field, including environmental remediation, energy conversion, and splitting of water. However, ensuring resource reusability and minimizing the environmental impact are crucial considerations in the development.

View Article and Find Full Text PDF

Lead toxicity is a barrier to the widespread commercial manufacture of lead halide perovskites and their use in solar photovoltaic (PV) devices. Eco-friendly lead-free perovskite solar cells (PSCs) have been developed using certain unique non- or low-toxic perovskite materials. In this context, Sn-based perovskites have been identified as promising substitutes for Pb-based perovskites due to their similar characteristics.

View Article and Find Full Text PDF

Aloe vera-derived graphene (ADG) coupled system photocatalyst, mimicking natural photosynthesis, is one of the most promising ways for converting solar energy into ammonia (NH ) and nicotinamide adenine dinucleotide (NADH) that have been widely used to make the numerous chemicals such as fertilizer and fuel. In this study, we report the synthesis of the aloe vera-derived graphene-coupled phenosafranin (ADGCP) acting as a highly efficient photocatalyst for the generation of NH and regeneration of NADH from nitrogen (N ) and oxidized form of nicotinamide adenine dinucleotide (NAD ). The results show a benchmark instance for mimicking natural photosynthesis activity as well as the practical applications for the solar-driven selective formation of NH and the regeneration of NADH by using the newly designed photocatalyst.

View Article and Find Full Text PDF