708 results match your criteria: "MRC Centre for Molecular Bacteriology and Infection; Imperial College London; London[Affiliation]"

Mechanistic understanding of the impact of coinfections is a critical knowledge gap. A workshop on coinfections highlighted key aspects required to advance this field, including identifying the coinfection priorities, creating research platforms for this type of research, promoting cross-expertise collaborations, and securing funding to support cross-kingdom pathogen research.

View Article and Find Full Text PDF

Bioinformatic analysis of molecular characteristics and oncogenic features of CARD14 in human cancer.

Sci Rep

October 2024

Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, 08007, Spain.

Article Synopsis
  • CARD14 is a protein linked to inflammatory skin diseases and serves as a scaffold to activate NF-KB, with new research suggesting it may also influence cancer development.* -
  • Analysis of TCGA tumor data revealed increased CARD14 expression in various cancers, correlating with better patient survival rates in sarcoma, lung, cervix, and head and neck cancers.* -
  • The study indicates that CARD14 not only relates to immune cell infiltration, particularly neutrophils, but also plays a role in epithelial development, suggesting its potential as a prognostic biomarker in cancer.*
View Article and Find Full Text PDF

The WHO research agenda for antimicrobial resistance (AMR) in human health has identified 40 research priorities to be addressed by the year 2030. These priorities focus on bacterial and fungal pathogens of crucial importance in addressing AMR, including drug-resistant pathogens causing tuberculosis. These research priorities encompass the entire people-centred journey, covering prevention, diagnosis, and treatment of antimicrobial-resistant infections, in addition to addressing the overarching knowledge gaps in AMR epidemiology, burden and drivers, policies and regulations, and awareness and education.

View Article and Find Full Text PDF

Rare mutations in CARD14 promote psoriasis by inducing CARD14-BCL10-MALT1 complexes that activate NF-κB and MAP kinases. Here, the downstream signalling mechanism of the highly penetrant CARD14E138A alteration is described. In addition to BCL10 and MALT1, CARD14E138A associated with several proteins important in innate immune signalling.

View Article and Find Full Text PDF

T3SS protein EsrC binds to the -like operator of type 1 fimbrial operon to suppress adhesion of .

Appl Environ Microbiol

August 2024

State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.

Type 1 fimbria, the short hair-like appendage assembled on the bacterial surface, plays a pivotal role in adhesion and invasion in . The type III secretion system (T3SS), another bacterial surface appendage, facilitates 's replication by delivering effectors into host cells. Our previous research demonstrated that T3SS protein EseJ inhibits adhesion and invasion of by suppressing type 1 fimbria.

View Article and Find Full Text PDF

Integrated Analysis of Patient Networks and Plasmid Genomes to Investigate a Regional, Multispecies Outbreak of Carbapenemase-Producing Enterobacterales Carrying Both blaIMP and mcr-9 Genes.

J Infect Dis

July 2024

NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom.

Article Synopsis
  • Carbapenemase-producing Enterobacterales (CPE), particularly those encoding imipenemase (IMP), were studied for their emergence in a London healthcare network from 2016-2019, showcasing major antibiotic resistance issues across various species.
  • The research combined network analysis of patient pathways with genomic studies, identifying 84 Enterobacterales isolates, mainly from Klebsiella, Enterobacter, and E. coli, with a high prevalence of a specific plasmid linked to resistance genes.
  • Findings revealed an unnoticed interspecies outbreak through plasmid sharing, emphasizing the need for enhanced investigation techniques like DNA sequencing to effectively track and manage pathogen transmission in hospital settings.
View Article and Find Full Text PDF

Environmental and genetic influence on the rate and spectrum of spontaneous mutations in .

Microbiology (Reading)

April 2024

Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK.

Spontaneous mutations are the ultimate source of novel genetic variation on which evolution operates. Although mutation rate is often discussed as a single parameter in evolution, it comprises multiple distinct types of changes at the level of DNA. Moreover, the rates of these distinct changes can be independently influenced by genomic background and environmental conditions.

View Article and Find Full Text PDF

Spread of carbapenemase-producing Morganella spp from 2013 to 2021: a comparative genomic study.

Lancet Microbe

June 2024

Team Resist UMR1184 Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance-Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France.

Article Synopsis
  • * Researchers analyzed 275 isolates from various countries using genomic techniques and found three main groups along with a proposed modified taxonomy for the genus.
  • * The findings suggest significant genetic diversity among Morganella spp and highlight the importance of monitoring these pathogens' resistance mechanisms for better treatment options.
View Article and Find Full Text PDF

Inflammation as the nexus: exploring the link between acute myocardial infarction and chronic obstructive pulmonary disease.

Front Cardiovasc Med

February 2024

Microcirculation Research Group, Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.

Chronic obstructive pulmonary disease (COPD), particularly following acute exacerbations (AE-COPD), significantly heightens the risks and mortality associated with acute myocardial infarction (AMI). The intersection of COPD and AMI is characterised by a considerable overlap in inflammatory mechanisms, which play a crucial role in the development of both conditions. Although extensive research has been conducted on individual inflammatory pathways in AMI and COPD, the understanding of thrombo-inflammatory crosstalk in comorbid settings remains limited.

View Article and Find Full Text PDF

Antibiotic resistance is a serious problem that poses a major challenge to tuberculosis control worldwide. Many developing countries still struggle with this infection in term of various aspects as it remains a major health concern. A number of developing countries are located in the Middle East, one of the world's most important regions.

View Article and Find Full Text PDF

Prokaryotic type III CRISPR-Cas systems provide immunity against viruses and plasmids using CRISPR-associated Rossman fold (CARF) protein effectors. Recognition of transcripts of these invaders with sequences that are complementary to CRISPR RNA guides leads to the production of cyclic oligoadenylate second messengers, which bind CARF domains and trigger the activity of an effector domain. Whereas most effectors degrade host and invader nucleic acids, some are predicted to contain transmembrane helices without an enzymatic function.

View Article and Find Full Text PDF

Environmental factors, infection, or injury can cause oxidative stress in diverse tissues and loss of tissue homeostasis. Effective stress response cascades, conserved from invertebrates to mammals, ensure reestablishment of homeostasis and tissue repair. Hemocytes, the blood-like cells, rapidly respond to oxidative stress by immune activation.

View Article and Find Full Text PDF

Shigella flexneri is a human-adapted pathovar of Escherichia coli that can invade the intestinal epithelium, causing inflammation and bacillary dysentery. Although an important human pathogen, the host response to S. flexneri has not been fully described.

View Article and Find Full Text PDF

Background: (StrepA) causes a significant burden of disease globally from superficial infections to invasive disease. It is responsible for over 500,000 deaths each year, predominantly in low- and middle-income countries (LMIC). Superficial StrepA infections of the skin and pharynx can lead to rheumatic heart disease, the largest cause of StrepA-related deaths in LMIC.

View Article and Find Full Text PDF

Type 4 pili (T4P) are important virulence factors, which belong to a superfamily of nanomachines ubiquitous in prokaryotes, called type 4 filaments (T4F). T4F are defined as helical polymers of type 4 pilins. Recent advances in cryo-electron microscopy (cryo-EM) led to structures of several T4F, revealing that the long N-terminal α-helix (α1) - the trademark of pilins - packs in the centre of the filaments to form a hydrophobic core.

View Article and Find Full Text PDF

Bacteriophages (phages) are the most abundant biological entities on Earth, exerting a significant influence on the dissemination of bacterial virulence, pathogenicity, and antimicrobial resistance. Temperate phages integrate into the bacterial chromosome in a dormant state through intricate regulatory mechanisms. These mechanisms repress lytic genes while facilitating the expression of integrase and the CI master repressor.

View Article and Find Full Text PDF

Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-γ (IFN-γ)-inducible antimicrobial factors, such as the guanylate binding proteins (GBPs), promote cell-intrinsic defense by attacking intracellular pathogens and by inducing programmed cell death. Working in human macrophages, we discovered that GBP1 expression in the absence of IFN-γ killed the cells and induced Golgi fragmentation.

View Article and Find Full Text PDF

Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope.

Adv Microb Physiol

July 2023

Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States. Electronic address:

Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics.

View Article and Find Full Text PDF

IL-1β turnover by the UBE2L3 ubiquitin conjugating enzyme and HECT E3 ligases limits inflammation.

Nat Commun

July 2023

Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK.

The cytokine interleukin-1β (IL-1β) has pivotal roles in antimicrobial immunity, but also incites inflammatory disease. Bioactive IL-1β is released following proteolytic maturation of the pro-IL-1β precursor by caspase-1. UBE2L3, a ubiquitin conjugating enzyme, promotes pro-IL-1β ubiquitylation and proteasomal disposal.

View Article and Find Full Text PDF

TECPR1 conjugates LC3 to damaged endomembranes upon detection of sphingomyelin exposure.

EMBO J

September 2023

Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK.

Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria-containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin-8 triggers anti-bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta-propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1.

View Article and Find Full Text PDF

Antimicrobial resistant Salmonella enterica serovar Concord (S. Concord) is known to cause severe gastrointestinal and bloodstream infections in patients from Ethiopia and Ethiopian adoptees, and occasional records exist of S. Concord linked to other countries.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a versatile pathogen that resists environmental stress, such as suboptimal pH. As a result of exposure to environmental stress, P. aeruginosa shows an altered virulence-related phenotype.

View Article and Find Full Text PDF

Lipopolysaccharide as an antibiotic target.

Biochim Biophys Acta Mol Cell Res

October 2023

MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London SW7 2AZ, UK. Electronic address:

Gram-negative bacteria, including Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii are amongst the highest priority drug-resistant pathogens, for which new antibiotics are urgently needed. Whilst antibiotic drug development is inherently challenging, this is particularly true for Gram-negative bacteria due to the presence of the outer membrane, a highly selective permeability barrier that prevents the ingress of several classes of antibiotic. This selectivity is largely due to an outer leaflet composed of the glycolipid lipopolysaccharide (LPS), which is essential for the viability of almost all Gram-negative bacteria.

View Article and Find Full Text PDF

The type VI secretion system (T6SS) is an antibacterial weapon that is used by numerous Gram-negative bacteria to gain competitive advantage by injecting toxins into adjacent prey cells. Predicting the outcome of a T6SS-dependent competition is not only reliant on presence-absence of the system but instead involves a multiplicity of factors. Pseudomonas aeruginosa possesses 3 distinct T6SSs and a set of more than 20 toxic effectors with diverse functions including disruption of cell wall integrity, degradation of nucleic acids or metabolic impairment.

View Article and Find Full Text PDF