265,266 results match your criteria: "MN; and University of Mississippi Medical Center T.H.M.[Affiliation]"

Interfacial Water Orientation in Neutral Oxygen Catalysis for Reversible Ampere-scale Zinc-air Batteries.

Angew Chem Int Ed Engl

January 2025

Nanjing University of Aeronautics and Astronautics, College of Materials Science and Technology, No. 169 Sheng Tai West Road, Jiangning District, Nanjing, Jiangsu, China, 211106, Nanjing, CHINA.

The neutral oxygen catalysis is an electrochemical reaction of the utmost importance in energy generation, storage application, and chemical synthesis. However, the restricted availability of protons poses a challenge to achieving kinetically favorable oxygen catalytic reactions. Here, we alter the interfacial water orientation by adjusting the Brønsted acidity at the catalyst surface, to break the proton transfer limitation of neutral oxygen electrocatalysis.

View Article and Find Full Text PDF

Context: A national assessment of osteoporosis drug therapy (ODT) use can inform the extent of underdiagnosis and undertreatment of osteoporosis.

Objective: The aim was to describe trends in ODT use by age, sex, fragility fracture, and documented osteoporosis.

Methods: This was a retrospective analysis of patient-quarter observations for adults aged ≥50 years with commercial or Medicare Advantage health insurance in the OptumLabs Data Warehouse between 2011 and 2022.

View Article and Find Full Text PDF

The term "aerophilic surface" is used to describe superhydrophobic surfaces in the Cassie-Baxter wetting state that can trap air underwater. To create aerophilic surfaces, it is essential to achieve a synergy between a low surface energy coating and substrate surface roughness. While a variety of techniques have been established to create surface roughness, the development of rapid, scalable, low-cost, waste-free, efficient, and substrate-geometry-independent processes for depositing low surface energy coatings remains a challenge.

View Article and Find Full Text PDF

Attitudes, beliefs and preferences surrounding home-based exercise programs in endometrial cancer patients receiving treatment.

Gynecol Oncol Rep

February 2025

University of Iowa, Department of Psychological and Brain Sciences, Holden Comprehensive Cancer Center, G60 Psychological and Brain Sciences Building, 340 Iowa Ave, Iowa City, IA 52242, USA.

Background: Despite recommendations, exercise participation among endometrial cancer survivors remains low. Previous interventions focused on weight loss or in-person programs with limited reach. Regular exercise, regardless of weight change, reduces mortality risk and improves functionality.

View Article and Find Full Text PDF

The role of cancer cell-released extracellular vesicles: have we become closer to cancer pain treatment?

Extracell Vesicles Circ Nucl Acids

December 2024

Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA.

The effective management of cancer pain continues to be a challenge because of our limited understanding of cancer pain mechanisms and, in particular, how cancer cells interact with neurons to produce pain. In a study published in , Inyang used a mouse model of human papillomavirus (HPV1)-induced oropharyngeal squamous cell carcinoma to show a role for cancer cell-derived extracellular vesicles (cancer sEVs) in cancer pain. They found that inhibiting the release of sEVs reduced spontaneous and evoked pain behaviors, and that pain produced by sEVs is due to activation of TRPV1 channels.

View Article and Find Full Text PDF

Objective: Osteoarthritis is a chronic, debilitating disease that causes long-term pain and immobility. Germline deletion of Phlpp1 or administration of small molecules that inhibit Phlpp1 prevents post-traumatic osteoarthritis (PTOA) in mice. However, the chondrocyte-intrinsic role of Phlpp1 in PTOA progression is unknown.

View Article and Find Full Text PDF

Compensatory effect-based oxidative stress management microneedle for psoriasis treatment.

Bioact Mater

April 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.

Reactive oxygen species (ROS) at elevated levels trigger oxidative DNA damage, which is a significant factor in psoriasis exacerbation. However, normal ROS levels are essential for cell signaling, cell growth regulation, differentiation, and immune responses. To address this, we developed ROS control strategies inspired by compensatory effects.

View Article and Find Full Text PDF

Combined Experimental and Theoretical Approach to the Electronic and Magnetic Properties of Cu-Doped LaMnO Perovskites.

J Phys Chem C Nanomater Interfaces

January 2025

Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck,Innrain 80-82, 6020 Innsbruck, Austria.

Cu-doped LaCu Mn O perovskites have been used as a model system for a joint experimental and theoretical assessment of the influence of the Cu doping level on the structural, electronic, and magnetic properties. The different Cu-doped phases LaCuMnO (LCM37), LaCuMnO (LCM55), and LaCuMnO (LCM73) including the respective Cu- and Mn-free benchmark materials LaCuO (LC) and LaMnO (LM) have been studied by magnetization measurements and electronic paramagnetic resonance. Ferromagnetic behavior was detected for pure LM and all Cu-doped perovskites, whereas antiferromagnetic behavior was revealed for LaCuO.

View Article and Find Full Text PDF

Electrochemical energy storage plays a critical role in the transition to clean energy. With the growing demand for efficient and sustainable energy solutions, supercapacitors have gained significant attention due to their high specific capacitance, rapid charge/discharge capabilities, long lifespan, safe operation across various temperatures, and minimal maintenance needs. This study introduces a novel approach for the synthesis of high-performance supercapacitor electrodes by using MnNi-MOF-74 as a precursor.

View Article and Find Full Text PDF

Manganese dioxide (MnO) is a well-known pseudocapacitive material that has been extensively studied and highly regarded, especially in supercapacitors, due to its remarkable surface redox behavior, leading to a high specific capacitance. However, its full potential is impeded by inherent characteristics such as its low electrical conductivity, dense morphology, and hindered ionic diffusion, resulting in limited rate capability in supercapacitors. Addressing this issue often requires complicated strategies and procedures, such as designing sophisticated composite architectures.

View Article and Find Full Text PDF

Soil contamination by heavy metals (HM) is a critical area of research. Traditional methods involving sample collection and lab analysis are effective but costly and time-consuming. This study explores whether geostatistical analysis with GIS and open data can provide a faster, more precise, and cost-effective alternative for HM contamination assessment without extensive sampling.

View Article and Find Full Text PDF

Evaluating the effect of denoising submillimeter auditory fMRI data with NORDIC.

Imaging Neurosci (Camb)

August 2024

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.

Functional magnetic resonance imaging (fMRI) has emerged as an essential tool for exploring human brain function. Submillimeter fMRI, in particular, has emerged as a tool to study mesoscopic computations. The inherently low signal-to-noise ratio (SNR) at submillimeter resolutions warrants the use of denoising approaches tailored at reducing thermal noise-the dominant contributing noise component in high-resolution fMRI.

View Article and Find Full Text PDF

Rational & Objective: Data are limited regarding the long-term efficacy of tolvaptan in adults aged 18-35 years with autosomal dominant polycystic kidney disease (ADPKD) at increased risk of rapid progression. We assessed the effects of tolvaptan within a larger population of younger adults and over longer follow-up than individual clinical trials could provide.

Study Design: Pooled database study.

View Article and Find Full Text PDF

Improving the alkaline hydrogen evolution reaction (HER) efficiency is essential for developing advanced anion exchange membrane water electrolyzers (AEMWEs) that operate at industrial ampere-level currents. Herein, we employ density functional theory (DFT) calculations to identify Ni-RuO2 as the leading candidate among various 3d transition metal-doped M-RuO2 (where metal M includes Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn). The incorporation of Ni atoms facilitates the partial reduction of RuO2, resulting in the formation of a Ni-Ru/RuO2 interface having a significant built-in electric field (BIEF) during electrochemical reactions.

View Article and Find Full Text PDF

Multielement-Doped Tungstic Acids via Submerged Photosynthesis for Enhanced All-Solar Photoelectrochemical Responses.

ACS Appl Mater Interfaces

January 2025

Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.

Bifunctional electrode materials that can convert solar energy into electricity and store chemical energy are a functional strategy for resolving the instability of solar energy. However, most commonly used transition metal oxide semiconductor materials lack broadband wavelength absorption responses, resulting in incomplete solar energy utilization. Herein, multielement-doped MoWO·0.

View Article and Find Full Text PDF

Potassium manganese-based Prussian blue analogs (KMn-HCF) hold great potential as cathodes for sodium-ion batteries (SIBs). However, the rapid synthesis process often results in excessively small particle sizes, increasing surface area and thereby intensifying side reactions with the electrolyte, which can damage the cathode electrolyte interface (CEI) and diminish cycling stability. Herein, we designed a topological phase transition strategy to assemble small KMn-HCF particles into a 600 nm cubic superstructure.

View Article and Find Full Text PDF

Toward a phylogenomic classification of magnoliids.

Am J Bot

January 2025

National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, NSW, Australia.

Premise: Magnoliids are a strongly supported clade of angiosperms. Previous phylogenetic studies based primarily on analyses of a limited number of mostly plastid markers have led to the current classification of magnoliids into four orders and 18 families. However, uncertainty remains regarding the placement of several families.

View Article and Find Full Text PDF

Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.

Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.

View Article and Find Full Text PDF

Background: Motor vehicle crashes are the second leading cause of injury death among adults aged 65 and older in the U.S., second only to falls.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) lacks a specific biomarker, but is defined by relatively selective toxicity to motor neurons (MN). As others have highlighted, this offers an opportunity to develop a sensitive and specific biomarker based on detection of DNA released from dying MN within accessible biofluids. Here we have performed whole genome bisulfite sequencing (WGBS) of iPSC-derived MN from neurologically normal individuals.

View Article and Find Full Text PDF

Background: Low blood absolute lymphocyte count (ALC) may predict severe COVID-19 outcomes. Knowledge gaps remain regarding the relationship of ALC trajectory with clinical outcomes and factors associated with lymphopenia.

Methods: Our post hoc analysis of the Therapeutics for Inpatients with COVID-19 platform trial utilized proportional hazards models to assess relationships between Day (D) 0 lymphopenia (ALC < 0.

View Article and Find Full Text PDF

Purpose: This feasibility study estimated accrual, retention, adherence, and summarized preliminary efficacy data from a stepped-care telehealth intervention for cancer survivors with moderate or severe levels of anxiety and/or depressive symptoms.

Methods: Participants were randomized to intervention or enhanced usual care (stratified by symptom severity). In the intervention group, those with moderate symptoms received a cognitive-behavioral therapy (CBT) workbook/6 bi-weekly check-in calls (low intensity) and severe symptoms received the workbook/12 weekly therapy sessions (high intensity).

View Article and Find Full Text PDF

The objective was to determine the effects of injectable trace minerals (ITM, containing Se, Cu, Zn & Mn) administered at the time of primary intranasal (IN) modified-live virus (MLV) vaccination of young dairy calves on the serum neutralizing antibody (SNA) titers to Bovine herpes virus 1 (BHV1), Bovine respiratory syncytial virus (BRSV), and Bovine Parainfluenza type 3 virus (BPIV); cytokine expression in peripheral white blood cells, and BHV1-specific IgA titers in nasal secretions following the vaccination. A total of 60 calves (1 month old) were administered an IN MLV vaccine containing BHV1, BRSV, BPIV (Inforce 3) and randomly assigned to one of two experimental groups: ITM (n = 30; Multimin90, containing Se, Cu, Zn, and Mn) or SAL (n = 30; sterile saline). There was a consistent decay in virus-specific SNA titers in both groups.

View Article and Find Full Text PDF

Kinetics of reformation of the S state capable of progressing to the S state after the O release by photosystem II.

Photosynth Res

January 2025

Department of Chemistry, Graduate School of Science and Technology, Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.

The active site for water oxidation in photosystem II (PSII) comprises a MnCaO cluster adjacent to a redox-active tyrosine residue (Tyr). During the water-splitting process, the enzyme transitions through five sequential oxidation states (S to S), with O evolution occurring during the STyr· to STyr transition. Chloride also plays a role in this mechanism.

View Article and Find Full Text PDF