3 results match your criteria: "MA. Electronic address: malpap@broadinstitute.org.[Affiliation]"

Despite the widespread use of MS for hydrogen/deuterium exchange measurements, no systematic, large-scale study has been conducted to compare the observed exchange rates in protein-derived, unstructured peptides measured by MS to the predicted exchange rates calculated from NMR-derived values and how neighboring residues and post-translational modifications influence those exchange rates. In this study, we sought to test the accuracy of predicted values by performing hydrogen exchange measurements on whole cell digests to generate an unbiased dataset of 563 unique peptides derived from naturally-occurring protein sequences. A remarkable 97% of observed exchange rates of peptides are within two-fold of predicted values.

View Article and Find Full Text PDF

The N-terminal regions of histone proteins (tails) are dynamic elements that protrude from the nucleosome and are involved in many aspects of chromatin organization. Their epigenetic role is well-established, and post-translational modifications (PTMs) present on these regions contribute to transcriptional regulation. While hydrogen/deuterium exchange mass spectrometry (HX-MS) is well-suited for the analysis of dynamic structures, it has seldom been employed to analyze histones due to the poor N-terminal coverage obtained using pepsin.

View Article and Find Full Text PDF

The N-terminal regions (tails) of histone proteins are dynamic elements that protrude from the nucleosome and are involved in many aspects of chromatin organization. Their epigenetic role is well-established, and post-translational modifications present on these regions contribute to transcriptional regulation. Considering their biological significance, relatively few structural details have been established for histone tails, mainly because of their inherently disordered nature.

View Article and Find Full Text PDF