879,905 results match your criteria: "MA; UMass Memorial Medical Center[Affiliation]"

In the rapidly evolving field of healthcare research, Artificial Intelligence (AI) and conversational models like ChatGPT (Conversational Generative Pre-trained Transformer) offer promising tools for data analysis. The aim of this study was to: 1) apply ChatGPT methodology alongside human coding to analyze qualitative health services feedback, and 2) examine healthcare experiences among lesbian, gay, bisexual, transgender, and queer (LGBTQ+) patients ( = 41) to inform future intervention. The hybrid approach facilitated the identification of themes related to affirming care practices, provider education, communicative challenges and successes, and environmental cues.

View Article and Find Full Text PDF

Objectives: Infantile hemangioma (IH) is a benign vascular tumor that occurs in 5% of infants, predominantly in female and preterm neonates. Propranolol is the mainstay of treatment for IH. Given the short half-life of propranolol regarding β-adrenergic receptor inhibition as well as its side effects, propranolol is administered to infants 2-3 times daily with 1 mg/kg/dose.

View Article and Find Full Text PDF

State of the Heart (and Brain) in 2025.

Circulation

January 2025

Richard A. and Susan F. Smith Center for Outcomes Research, Division of Cardiology, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA.

View Article and Find Full Text PDF

Objective: We aimed to determine whether a pro-inflammatory dietary pattern (mechanism-based diet) is associated with incident female gout among two large cohorts of US women.

Methods: We prospectively followed 79,104 women from Nurses' Health Study (NHS; 1984-2016) and 93,454 women from NHSII (1991-2017); 45,445 men from Health Professionals Follow-up Study (1986-2016) served as a comparison cohort. Validated food frequency questionnaires were used to calculate Empirical Dietary Inflammatory Pattern (EDIP; food-based index predictive of circulating inflammatory biomarkers) scores every 4-years.

View Article and Find Full Text PDF

Background: Understanding the association of tobacco product use with subclinical markers is essential in evaluating health effects to inform regulatory policy. This is particularly relevant for noncigarette products (eg, cigars, pipes, and smokeless tobacco), which have been understudied because of their low prevalence in individual cohort studies.

Methods: This cross-sectional study included 98 450 participants from the Cross-Cohort Collaboration-Tobacco data set.

View Article and Find Full Text PDF

Effects of porous hedgehog-like morphology and graphene oxide on the cycling stability and rate performance of CoO/NiO microspheres.

Nanoscale Horiz

January 2025

Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200438, P. R. China.

A porous hedgehog-like CoO/NiO/graphene oxide (denoted as PHCNO/GO) microsphere was prepared by a facile solvothermal method, followed by an annealing treatment under argon atmosphere. Benefiting from the thin CoO/NiO nanosheets with a large specific surface area, abundant pores distributed between the CoO/NiO nanosheets, and GO firmly wrapped around the surface of PHCNO microspheres, the PHCNO/GO microspheres showed excellent lithium storage performance. The CoO/NiO nanosheets provided numerous active sites, achieving a high reversible specific capacity.

View Article and Find Full Text PDF

An isolable boron-centered radical anion stabilized by a carbazole moiety.

Dalton Trans

January 2025

Hebei Center for New Inorganic Optoelectronic Nanomaterial Research, Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering and Materials, Handan University, Handan 056002, P. R. China.

The isolation of a stable persistent carbazole-stabilized boron-centered monoradical anion 1˙, which has a high spin density at the B atom, has been reported. It is characterized using the crystal structure and UV-vis absorption spectrum, as well as electron paramagnetic resonance spectroscopy. Interestingly, the B-N bond was activated by the boron-centered radical anion 1˙, which had not been reported before.

View Article and Find Full Text PDF

Efficient Orange Light-Emitting Diodes from Nontoxic Organic-Inorganic Hybrid Copper Halides Enabled by Nonionic Surfactant Chemisorption.

Nano Lett

January 2025

Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China.

Ternary copper halides with an eco-friendly property have emerged as attractive candidates to replace toxic lead-containing perovskites for light-emitting diodes (LEDs), yet achieving long-wavelength electroluminescence remains unexplored. Herein, we report the first realization of orange-emitting LEDs (595 nm) based on nontoxic organic-inorganic PEACuI (PEA = β-phenylethylamine) films enabled by a nonionic surfactant poly(propylene glycol) bis(2-aminopropyl ether) (APPG) chemisorption. Experimental and theoretical analyses rationalize that the APPG additive has strong chemisorption with the Cu-I framework within the grain boundaries of PEACuI films, which not only improves the film's morphology but also passivates the iodine vacancy defects.

View Article and Find Full Text PDF

Nutritional and functional outcomes in trials of nutrient-stimulated hormone-based therapy-A systematic mapping review.

Obes Rev

January 2025

Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Nutrition, Centre Spécialisé Obésité, Hôpital Européen Georges Pompidou, Paris, France.

Introduction: Currently, trials are investigating the efficacy of nutrient-stimulated hormone-based therapies (NuSHs) in promoting weight loss in people living with overweight and obesity. However, the extent to which nutritional and functional outcomes are evaluated remains uncertain. Thus, we conducted a systematic mapping to assess the presence of nutritional and functional outcomes in randomized controlled trials (RCTs) investigating NuSHs.

View Article and Find Full Text PDF

The Proximal Protonation Source in Cu-NHx-C Single Atom Catalysts Selectively Boosts CO2 to Methane Electroreduction.

Angew Chem Int Ed Engl

January 2025

Peking University Shenzhen Graduate School, Shool of Chemical Biology and Biotechnology, Lishui Road, Nanshan District, -, Shenzhen, CHINA.

Regulating the coordination environment of active sites has proved powerful for tapping into their catalytic activity and selectivity in homogeneous catalysis, yet the heterogeneous nature of copper single-atom catalysts (SACs) makes it challenging. This work reports a bottom-up approach to construct a SAC (rGO@Cu-N(Hx)-C) by inlaying preformed amine coordinated Cu2+ units into reduced graphene oxide (rGO), permitting molecular level revelation on how the proximal N-site functional groups (N-H or N-CH3) impact on the carbon dioxide reduction reaction (CO2RR). It is demonstrated that the N-H moiety of rGO@Cu-NHx-C can serve as an in-situ protonation agent to accelerate the CO2-to-methane reduction kinetics, delivering a methane current density (163 mA/cm2) 2.

View Article and Find Full Text PDF

Atmospheric oxygen mediated oxidation coupling of primary and secondary alcohols: synthesis of pyrazolo[1,5-]pyrimidines.

Org Biomol Chem

January 2025

Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China.

An atmospheric oxygen-mediated oxidative coupling of primary and secondary alcohols for the synthesis of nitrogen-containing heterocycles has been developed. This method utilizes atmospheric oxygen as the sole, environmentally friendly oxidant to convert a variety of alkyl and aromatic primary alcohols into aldehyde equivalents, avoiding over-oxidation to carboxylic acids. Notably, these mild oxidation conditions are compatible with both primary and secondary alkyl alcohols as substrates.

View Article and Find Full Text PDF

The sluggish kinetics of the hydrogen evolution reaction (HER) result in a high overpotential in alkaline solutions. A high-curvature metal oxide heterostructure can effectively boost the electrocatalytic HER by leveraging the tip-enhanced local electric field effect. Herein, NiP/NiMoO nanocones were synthesised on a nickel foam (NF) substrate by etching a metal-organic framework template.

View Article and Find Full Text PDF

Controlled and optimized heterogenic interfacial coupling is the key to enhance the electrochemical performance. Herein, for the first time, telluride-based CoS/CoTe heterostructure is reported as a bifunctional catalyst for energy-efficient H generation. Detailed investigations suggest that the heterogenic interfacial coupling leads to superior bifunctional electrochemical performance of the CoS/CoTe heterostructure.

View Article and Find Full Text PDF

A Coordination Nanosystem Enables Endogenous Ferric Ion-Initiated Multi-Catalysis for Synergistic Tumor-Specific Ferroptosis and Gene Therapy.

Small

January 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.

Emerging evidence demonstrates that inducing ferroptosis, a nonapoptotic programmed cell death mode, holds significant potential for tumor treatment. However, current ferroptosis strategies utilizing exogenous Fenton-type heavy metal species or introducing glutathione (GSH)/glutathione peroxidase 4 (GPX4) suppressants are hampered by latent adverse effects toward organisms, while utilizing endogenous iron may cause undesirable tumor angiogenesis through specific signaling pathways. Here, a ferric ion (Fe)-responsive and DNAzyme-delivered coordination nanosystem (ZDD) is developed to achieve a novel scheme of synergistic tumor-specific ferroptosis and gene therapy, which modulates and harnesses the endogenous iron in tumors for inducing ferroptosis while intercepting tumor angiogenesis to enhance therapeutic efficacy.

View Article and Find Full Text PDF

Ultrahigh Exchange Bias Field/Coercive Field Ratio in In Situ Formed Two-Dimensional Magnetic Te-CrO/CrTe Heterostructures.

Adv Mater

January 2025

Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China.

The exchange bias (EB) effect is a fundamental magnetic phenomenon, in which the exchange bias field/coercive field ratio (|H/H|) can improve the stability of spintronic devices. Two-dimensional (2D) magnetic heterostructures have the potential to construct low-power and high-density spintronic devices, while their typically air unstable and |H/H| lesser, limiting the possibility of applications. Here, 2D CrTe nanosheets have been systematically synthesized with an in situ formed ≈2 nm-thick Te doped CrO layer (Te-CrO) on the upper surface by chemical vapor deposition (CVD) method.

View Article and Find Full Text PDF

OsCYP22 Interacts With OsCSN5 to Affect Rice Root Growth and Auxin Signalling.

Plant Cell Environ

January 2025

Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, China.

Beyond structural support, plant root systems play crucial roles in the absorption of water and nutrients, fertiliser efficiency and crop yield. However, the molecular mechanism regulating root architecture in rice remains largely unknown. In this study, a short-root rice mutant was identified and named Oscyp22.

View Article and Find Full Text PDF

Size-Controllable High-Entropy Alloys Toward Stable Hydrogen Production at Industrial-Scale Current Densities.

Adv Mater

January 2025

State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.

Efficient and stable electrocatalytic hydrogen evolution reaction (HER) at high current densities is highly desirable for industrial-scale hydrogen production, which is yet challenging, because of the electrocatalyst with short lifespans during the acidic HER process. Here, a controllable preparation technique is successfully developed to synthesize PdPtRuRhAu high-entropy alloys (HEAs) of various sizes, within the 3.14 nm particles (HEA-3.

View Article and Find Full Text PDF

Purpose: Atypical teratoid/rhabdoid tumor (AT/RT) is a kind of central nervous system malignant tumor in children. In this study, we aimed to develop a practically clinical nomogram and risk grouping system to predict 1-year overall survival for patients with atypical teratoid/rhabdoid tumor.

Methods: The nomogram was constructed based on the pediatric tumor registry of Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine.

View Article and Find Full Text PDF

Hypothalamic kisspeptin (Kiss1) neurons are vital for maintaining fertility in the mammal. In the female rodent, Kiss1 neurons populate the anteroventral periventricular/periventricular nuclei (Kiss1AVPV/PeN) and the arcuate nucleus (Kiss1ARH). Kiss1ARH neurons (a.

View Article and Find Full Text PDF

extracellular vesicles alleviate alcohol-induced liver injury in mice by regulating gut microbiota and activating the Nrf-2 signaling pathway.

Food Funct

January 2025

Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, P. R. China.

derived extracellular vesicles (LAB-EVs) are nanosized particles secreted from during fermentation, and therefore exist universally in fermented foods such as yogurt, pickles, and fermented beverages. In this study, three LAB-EVs were prepared using a simple scalable method, and then their structures, compositions, and biosafety properties were characterized. The protective properties and potential mechanisms of action of the LAB-EVs against alcoholic liver disease were studied.

View Article and Find Full Text PDF

Recent Advances in the Design and Application of Asymmetric Carbon-Based Materials.

Small Methods

January 2025

College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China.

Asymmetric carbon-based materials (ACBMs) have received significant attention in scientific research due to their unique structures and properties. Through the introduction of heterogeneous atoms and the construction of asymmetric ordered/disordered structures, ACBMs are optimized in terms of electrical conductivity, pore structure, and chemical composition and exhibit multiple properties such as hydrophilicity, hydrophobicity, optical characteristics, and magnetic behavior. Here, the recent research progress of ACBMs is reviewed, focusing on the potential of these materials for electrochemical, catalysis, and biomedical applications and their unique advantages over conventional symmetric carbon-based materials.

View Article and Find Full Text PDF

Coaxial Direct Ink Writing of Cholesteric Liquid Crystal Elastomers in 3D Architectures.

Adv Mater

January 2025

Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA.

Cholesteric liquid crystal elastomers (CLCEs) hold great promise for mechanochromic applications in anti-counterfeiting, smart textiles, and soft robotics, thanks to the structural color and elasticity. While CLCEs are printed via direct ink writing (DIW) to fabricate free-standing films, complex 3D structures are not fabricated due to the opposing rheological properties necessary for cholesteric alignment and multilayer stacking. Here, 3D CLCE structures are realized by utilizing coaxial DIW to print a CLC ink within a silicone ink.

View Article and Find Full Text PDF