93 results match your criteria: "M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry[Affiliation]"

A total chemical synthesis of spacer-armed Forssman pentasaccharide is reported. The choice of the 2(donor) + 3(acceptor) block scheme, the optimal combination of a limited number of simple protecting groups and the sequence of deprotection steps allowed to achieve the high yield and stereoselectivity of glycosylation and to avoid losses during deprotection. The target pentasaccharide was obtained in a 10-mg scale.

View Article and Find Full Text PDF

Comparison of the reactivity of sialyl chlorides and bromides based on -acetylneuraminic acid (Neu5Ac) and its deaminated analogue (KDN) in reactions with MeOH and -PrOH without a promoter revealed that the acetoxy group at C-5 in a molecule of a sialic acid glycosyl donor can destabilize the corresponding glycosyl cation making the S1-like reaction pathway unfavorable. A change to the S2-like reaction pathway ensures preferential formation of the α-glycoside.

View Article and Find Full Text PDF

: Antimicrobial peptides are generally considered promising drug candidates for combating resistant bacterial infections. However, the selectivity of their action may vary significantly. Natural gomesin, isolated from haemocytes of the tarantula , demonstrates a broad spectrum of antimicrobial activities, being the most effective against pathogenic fungi.

View Article and Find Full Text PDF

Endogenous antimicrobial peptides (AMPs) are evolutionarily ancient molecular factors of innate immunity that play a key role in host defense. The study of the diversity of animal defense peptides has important applications in the context of the growing global antimicrobial resistance. In this study using a transcriptome mining approach, we found three novel thanatin-like β-hairpin AMPs in the bean bug , named Rip-2, Rip-3, and Rip-4.

View Article and Find Full Text PDF

The antimicrobial resistance crisis along with challenges of antimicrobial discovery revealed the vital necessity to develop new antibiotics. Many of the animal proline-rich antimicrobial peptides (PrAMPs) inhibit the process of bacterial translation. Genome projects allowed to identify immune-related genes encoding animal host defense peptides.

View Article and Find Full Text PDF

The adaption of plants to stressful environments depends on long-distance responses in plant organs, which themselves are remote from sites of perception of external stimuli. Jasmonic acid (JA) and its derivatives are known to be involved in plants' adaptation to salinity. However, to our knowledge, the transport of JAs from roots to shoots has not been studied in relation to the responses of shoots to root salt treatment.

View Article and Find Full Text PDF

Currently, the spread of fungal infections is becoming an urgent problem. Fungi of the genus are opportunistic microorganisms that cause superficial and life-threatening systemic candidiasis in immunocompromised patients. The list of antifungal drugs for the treatment of candidiasis is very limited, while the prevalence of resistant strains is growing rapidly.

View Article and Find Full Text PDF

Today, allergies have become a serious problem. PR-10 proteins are clinically relevant allergens that have the ability to bind hydrophobic ligands, which can significantly increase their allergenicity potential. It has been recently shown that not only the birch pollen allergen Bet v 1 but also the alder pollen allergen Aln g 1, might act as a true sensitizer of the immune system.

View Article and Find Full Text PDF

Broad-spectrum activity of membranolytic cationic macrocyclic peptides against multi-drug resistant bacteria and fungi.

Eur J Pharm Sci

June 2024

Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Rd, Irvine, CA 92618, United States. Electronic address:

The emergence of multidrug-resistant (MDR) strains causes severe problems in the treatment of microbial infections owing to limited treatment options. Antimicrobial peptides (AMPs) are drawing considerable attention as promising antibiotic alternative candidates to combat MDR bacterial and fungal infections. Herein, we present a series of small amphiphilic membrane-active cyclic peptides composed, in part, of various nongenetically encoded hydrophilic and hydrophobic amino acids.

View Article and Find Full Text PDF

Capitellacin is the β-hairpin membrane-active cationic antimicrobial peptide from the marine polychaeta . Capitellacin exhibits antibacterial activity, including against drug-resistant strains. To gain insight into the mechanism of capitellacin action, we investigated the structure of the peptide in the membrane-mimicking environment of dodecylphosphocholine (DPC) micelles using high-resolution NMR spectroscopy.

View Article and Find Full Text PDF

Adaptation to changes in the environment depends, in part, on signaling between plant organs to integrate adaptive response at the level of the whole organism. Changes in the delivery of hormones from one organ to another through the vascular system strongly suggest that hormone transport is involved in the transmission of signals over long distances. However, there is evidence that, alternatively, systemic responses may be brought about by other kinds of signals (e.

View Article and Find Full Text PDF

Background: Owing to improvement of the molecular diagnostic methods using purified preparations of nucleic acids (NAs), the development of effective methods providing the isolation of DNA is still relevant. The sorption properties of magnetic multi-walled carbon nanotubes (MWCNTs), oxidized MWCNTs and MWCNTs (pristine and oxidized) modified with polydiallyldimethylammonium chloride (pDADMAC) with respect to double strained DNA have been studied.

Results: It was shown that in the presence of MWCNTs/pDADMAC particles the DNA molecules were reversibly retained by the particle's surface.

View Article and Find Full Text PDF

Structural Analysis and Activity Correlation of Amphiphilic Cyclic Antimicrobial Peptides Derived from the [WR] Scaffold.

Molecules

December 2023

Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA.

In our ongoing quest to design effective antimicrobial peptides (AMPs), this study aimed to elucidate the mechanisms governing cyclic amphiphilic AMPs and their interactions with membranes. The objective was to discern the nature of these interactions and understand how peptide sequence and structure influence antimicrobial activity. We introduced modifications into the established cyclic AMP peptide, [WR], incorporating an extra aromatic hydrophobic residue (W), a positively charged residue (R), or the unique 2,5-diketopiperazine (DKP).

View Article and Find Full Text PDF

Lipid transfer proteins (LTPs) realize their functions in plants due to their ability to bind and transport various ligands. Structures of many LTPs have been studied; however, the mechanism of ligand binding and transport is still not fully understood. In this work, we studied the role of Lys61 and Lys81 located near the "top" and "bottom" entrances to the hydrophobic cavity of the lentil lipid transfer protein Lc-LTP2, respectively, in these processes.

View Article and Find Full Text PDF

Marine polychaetes represent an extremely rich and underexplored source of novel families of antimicrobial peptides (AMPs). The rapid development of next generation sequencing technologies and modern bioinformatics approaches allows us to apply them for characterization of AMP-derived genes and the identification of encoded immune-related peptides with the aid of genome and transcriptome mining. Here, we describe a universal bioinformatic approach based on the conserved BRICHOS domain as a search query for the identification of novel structurally unique AMP families in annelids.

View Article and Find Full Text PDF

The only human cathelicidin, LL-37, is a host defense antimicrobial peptide with antimicrobial activities against protozoans, fungi, Gram(+) and Gram(-) bacteria, and enveloped viruses. It has been shown in experiments in vitro that LL-37 is able to induce the production of various inflammatory and anti-inflammatory cytokines and chemokines by different human cell types. However, it remains an open question whether such cytokine induction is physiologically relevant, as LL-37 exhibited its immunomodulatory properties at concentrations that are much higher (>20 μg/mL) than those observed in non-inflamed tissues (1-5 μg/mL).

View Article and Find Full Text PDF
Article Synopsis
  • Protegrin-1 (PG-1) is an antimicrobial peptide effective against drug-resistant ESKAPE pathogens, but its high toxicity to mammalian cells limits its use as a systemic antibiotic.
  • Researchers modified PG-1 by changing specific amino acids to create analogs that maintain strong antimicrobial properties while reducing hemolytic activity.
  • One promising analog, [V16R], showed a significant reduction in toxicity and a ≥30-fold improved therapeutic index, proving effective in a septicemia infection model and suggesting potential for future drug development.
View Article and Find Full Text PDF

Candidiasis is one of the most common fungal diseases that can pose a threat to life in immunodeficient individuals, particularly in its disseminated form. Not only fungal invasion but also fatal infection-related inflammation are common causes of systemic candidiasis. In this study, we investigated in vitro immunomodulatory properties of the antifungal pea defensin Psd1 upon infection.

View Article and Find Full Text PDF

Proline-rich antimicrobial peptides (PrAMPs) having a potent antimicrobial activity and a modest toxicity toward mammalian cells attract much attention as new templates for the development of antibiotic drugs. However, a comprehensive understanding of mechanisms of bacterial resistance development to PrAMPs is necessary before their clinical application. In this study, development of the resistance to the proline-rich bovine cathelicidin Bac7 derivative was characterized in the multidrug-resistant clinical isolate causing the urinary tract infection.

View Article and Find Full Text PDF

In plants, lipid trafficking within and inside the cell is carried out by lipid-binding and transfer proteins. Ligands for these proteins are building and signaling lipid molecules, secondary metabolites with different biological activities due to which they perform diverse functions in plants. Many different classes of such lipid-binding and transfer proteins have been found, but the most common and represented in plants are lipid transfer proteins (LTPs), pathogenesis-related class 10 (PR-10) proteins, acyl-CoA-binding proteins (ACBPs), and puroindolines (PINs).

View Article and Find Full Text PDF

Structure-Based Rational Design of Small α-Helical Peptides with Broad-Spectrum Activity against Multidrug-Resistant Pathogens.

J Med Chem

January 2023

Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 94 01 Jeronimo Road, Irvine, California92618, United States.

A series of small (7-12 mer) amphipathic cationic peptides were designed and synthesized to create short helical peptides with broad-range bactericidal activity and selectivity toward the bacterial cells. The analysis identified a lead 12-mer peptide with broad-spectrum activity against Gram-positive (MIC = 3.1-6.

View Article and Find Full Text PDF

Gly m 4 is the major soybean allergen, causing birch pollen cross allergic reactions. In some cases, Gly m 4-mediated anaphylaxis takes place, but the causative factors are still unknown. Here, we studied the structural and immunologic properties of Gly m 4 to shed light on this phenomenon.

View Article and Find Full Text PDF

Bet v 1-independent sensitization to major allergens in Fagales pollen: Evidence at the T-cell level.

Allergy

March 2023

Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.

Background: In birch-dominated areas, allergies to pollen from trees of the order Fagales are considered to be initiated by the major birch pollen allergen Bet v 1. However, the sensitizing activity of Bet v 1-homologs in Fagales pollen might be underestimated. Allergen-specific T-cells are crucial in the sensitization process.

View Article and Find Full Text PDF

An increase in the frequency of mycoses and spreading of multidrug-resistant fungal pathogens necessitates the search for new antifungal agents. Earlier, we isolated the novel defensin from lentil seeds, designated as Lc-def, which inhibited the growth of phytopathogenic fungi. Here, we studied an antifungal activity of Lc-def against human pathogenic species, structural stability of the defensin, and its immunomodulatory effects that may help to prevent fungal infection.

View Article and Find Full Text PDF

CD133 is an extensively studied marker of the most malignant tumor cell population, designated as cancer stem cells (CSCs). However, the function of this glycoprotein and its involvement in cell regulatory cascades are still poorly understood. Here we show a positive correlation between the level of CD133 plasma membrane expression and the proliferative activity of cells of the Caco-2, HT-29, and HUH7 cancer cell lines.

View Article and Find Full Text PDF