129 results match your criteria: "M. N. Mikheev Institute of Metal Physics[Affiliation]"

2D iodine structures under high pressures are more attractive and valuable due to their special structures and excellent properties. Here, electronic transport properties of such 2D iodine structures are theoretically studied by considering the influence of the metal-element doping. In equilibrium, metal elements in Group 1 can enhance the conductance dramatically and show a better enhancement effect.

View Article and Find Full Text PDF

The electrical resistivity and the Hall effect of topological insulator BiTe and BiSe single crystals were studied in the temperature range from 4.2 to 300 K and in magnetic fields up to 10 T. Theoretical calculations of the electronic structure of these compounds were carried out in density functional approach, taking into account spin-orbit coupling and crystal structure data for temperatures of 5, 50 and 300 K.

View Article and Find Full Text PDF

Plain bearings, renowned for their versatility and simplicity, are extensively utilized in engineering design across various industries involving moving parts. Lubrication is vital to the functioning of these bearings, yet their usage is inhibited under dynamic load conditions, or at elevated or reduced temperatures due to this dependency on lubrication. This study introduces an innovative method to significantly mitigate friction and wear in plain bearings operating without lubrication.

View Article and Find Full Text PDF

Equiatomic medium-entropy alloy (MEA) FeNiCr-BC (0, 1, and 3 wt.% BC) coatings were deposited onto an AISI 1040 steel substrate using pulsed laser cladding. Based on an SEM microstructural analysis, it was found that the cross-sections of all the obtained specimens were characterized by an average coating thickness of 400 ± 20 μm, a sufficiently narrow (100 ± 20 μm) "coating-substrate" transition zone, and the presence of a small number of defects, including cracks and pores.

View Article and Find Full Text PDF

The design and synthesis of a new fluorophore containing an arylidene thiazole scaffold resulted in a compound with good photophysical characteristics. Furthermore, the thiazole C5-methyl group was easily modified into specific functional groups (CH Br and CH OH) for the formation of a series of photocourier molecules containing model compounds (benzoic acids), as well as prodrugs, including salicylic acid, caffeic acid, and chlorambucil via a "benzyl" linker. Spectral characteristics ( H, C NMR, and high-resolution mass spectra) corresponded to the proposed structures.

View Article and Find Full Text PDF

The growing demand for cheap, safe, recyclable, and environmentally friendly batteries highlights the importance of the development of organic electrode materials. Here, we present a novel redox-active polymer comprising a polyaniline-type conjugated backbone and quinizarin and anthraquinone units. The synthesized polymer was explored as a cathode material for batteries, and it delivered promising performance characteristics in both lithium and potassium cells.

View Article and Find Full Text PDF

This paper presents methods and approaches that can be used for production of Sm-Co-Fe-Cu-Zr permanent magnets with working temperatures of up to 550 °C. It is shown that the content of Sm, Cu, and Fe significantly affects the coercivity () value at high operating temperatures. A decrease in the content of Fe, which replaces Co, and an increase in the content of Sm in Sm-Co-Fe-Cu-Zr alloys lead to a decrease in value at room temperature, but significantly increase at temperatures of about 500 °C.

View Article and Find Full Text PDF

Herein, we present an efficient approach for screening the intrinsic photostability of organic absorber materials used in photovoltaic applications. Using a series of structurally related conjugated polymers and a set of complementary techniques, we established important "material structure-photostability" relationships. In particular, we have revealed that the introduction of alkoxy, thioalkyl, and fluorine substituents adversely affects the material photostability.

View Article and Find Full Text PDF

Quasi-2D perovskites have recently flourished in the field of luminescence due to the quantum-confinement effect and the efficient energy transfer between different n phases resulting in exceptional optical properties. However, owing to the lower conductivity and poor charge injection, quasi-2D perovskite light-emitting diodes (PeLEDs) typically suffer from low brightness and high-efficiency roll-off at high current densities compared to 3D perovskite-based PeLEDs, which is undoubtedly one of the most critical issues in this field. In this work, quasi-2D PeLEDs with high brightness, reduced trap density, and low-efficiency roll-off are successfully demonstrated by introducing a thin layer of conductive phosphine oxide at the perovskite/electron transport layer interface.

View Article and Find Full Text PDF

Thin films of BaM hexaferrite (BaFeO) were grown on α-AlO(0001) substrates by laser molecular beam epitaxy. Structural, magnetic, and magneto-optical properties were studied using medium-energy ion scattering, energy dispersive X-ray spectroscopy, atomic force microscopy, X-ray diffraction, magneto-optical spectroscopy, and magnetometric techniques, and the dynamics of magnetization by ferromagnetic resonance method. It was shown that even a short time annealing drastically changes the structural and magnetic properties of films.

View Article and Find Full Text PDF

The electronic and band structures of the Gd- and Sb-based intermetallic materials have been explored using the theoretical ab initio approach, accounting for strong electron correlations of the Gd-4f electrons. Some of these compounds are being actively investigated because of topological features in these quantum materials. Five compounds were investigated theoretically in this work to demonstrate the variety of electronic properties in the Gd-Sb-based family: GdSb, GdNiSb, GdSb, GdSbSO, and GdSb.

View Article and Find Full Text PDF
Article Synopsis
  • A total of 21 new xanthone and acridone compounds were created through specific chemical reactions involving triazine derivatives and acridone/xanthone derivatives, followed by optional ring aromatization.
  • Five of these compounds showed promising anticancer effects against several types of cancer cells, including colorectal and glioblastoma.
  • Notably, certain compounds exhibited low toxicity to normal kidney cells, indicating their potential for further development as cancer treatments, with one compound activating apoptotic mechanisms in glioblastoma cells.
View Article and Find Full Text PDF

Nonreciprocity, inequivalence in amplitudes and frequencies of spin waves propagating in opposite directions, is a key property underlying functionality in prospective magnonic devices. Here we demonstrate experimentally and theoretically a simple approach to induce frequency nonreciprocity in a magnetostatically coupled ferromagnetic bilayer structure with a nonmagnetic spacer by its geometrical asymmetry. Using Brillouin light scattering, we show the formation of two collective spin wave modes in FeGa/Cu/FeGa structure with different thicknesses of ferromagnetic layers.

View Article and Find Full Text PDF

A new route to bicyclic γ-lactams was found, which was proposed as a three-component cyclization of ethyl trifluoropyruvate with methyl ketones and 1,2-, 1,3-amino alcohols. As a result, a series of trifluoromethyl-substituted tetrahydropyrrolo [2,1-]oxazol-5-ones and tetrahydropyrrolo[2,1-][1,3]oxazine-6-ones was synthesized, in which the substituent at the nodal carbon atom was varied. The introduction of a twofold excess of ethyl trifluoropyruvate in reactions with amino alcohols and acetone made it possible to obtain the same bicycles, but functionalized with a hydroxyester fragment, which are formed due to four-component interactions of the reagents.

View Article and Find Full Text PDF

Amino-[1,1']-biphenyl-containing 3-aryl-[1,2,4]triazolo[4,3-]quinazoline derivatives with fluorescent properties have been designed and synthesized. The type of annelation of the triazole ring to the pyrimidine one has been unambiguously confirmed by means of an X-ray diffraction (XRD) method; the molecules are non-planar, and the aryl substituents form the pincer-like conformation. The UV/Vis and photoluminescent properties of target compounds were investigated in two solvents of different polarities and in a solid state.

View Article and Find Full Text PDF

In this work, the validity of standard magnetocaloric (MCE) scenarios is revisited for the Hubbard model for a square (two-dimensional) lattice to describe a layered metal. Different types of magnetic ordering (ferrimagnetic, ferromagnetic, Néel and canted antiferromagnetic states) with magnetic transitions between them are considered to minimize the total free energy. The phase-separated states formed by such first-order transitions are also considered consistently.

View Article and Find Full Text PDF

Titanium alloys based on orthorhombic titanium aluminide TiAlNb are promising refractory materials for aircraft engine parts in the operating temperature range from 600-700 °C. Parts made of TiAlNb-based alloys by traditional technologies, such as casting and metal forming, have not yet found wide application due to the sensitivity of processability and mechanical properties in chemical composition and microstructure compared with commercial solid-solution-based titanium alloys. In the last three decades, metal additive manufacturing (MAM) has attracted the attention of scientists and engineers for the production of intermetallic alloys based on TiAlNb.

View Article and Find Full Text PDF

A series of fluorescent sensors based on small molecule were designed and fully characterised, demonstrating AIEE effect and revealing an outstanding ability to selectively detect Hg ions. The structural and electronic properties were studied through quantum chemical calculations at (Time-Dependent) Density Functional Theory ((TD)-DFT) level. Carboxamides of 2-Aryl-1,2,3-Triazoles (CATs) showed significant differences in their photophysical properties depending on the structure of the substituent at amino function on the C5-atom in the heterocycle.

View Article and Find Full Text PDF

At present, the question of the relationship between the characteristic martensitic transformation temperatures (MTT) and the electronic parameters of a system has not been fully studied. In the present work, an attempt to establish a similar relationship using the example of the concentration of charge carriers, , was made. The field dependences of Hall resistivity and magnetization of the magnetocaloric NiMnIn (x = 0, 1, 2) alloys were measured at = 4.

View Article and Find Full Text PDF

4-Arylhydrazinylidene-5-(polyfluoroalkyl)pyrazol-3-ones (4-AHPs) were found to be obtained by the regiospecific cyclization of 2-arylhydrazinylidene-3-(polyfluoroalkyl)-3-oxoesters with hydrazines, by the azo coupling of 4-nonsubstituted pyrazol-5-oles with aryldiazonium chlorides or by the firstly discovered acid-promoted self-condensation of 2-arylhydrazinylidene-3-oxoesters. All the 4-AHPs had an acceptable ADME profile. Varying the substituents in 4-AHPs promoted the switching or combining of their biological activity.

View Article and Find Full Text PDF

The electronic and band structures of ternary RNiSb and binary RSb compounds for R = Tb, Dy, Ho, have been investigated using an ab initio method accounting for strong electron correlations in the 4f shell of the rare-earth metals. These ternary compounds are found to be semiconductors with the indirect gap of 0.21, 0.

View Article and Find Full Text PDF

Removal of heavy metal ions, in particular, divalent nickel ions from natural and wastewater, is of great importance for the environment. Nickel (II) ions are very toxic and provoke many diseases. The purpose of this work was to study the possibility of removing toxic nickel (II) ions from polluted water using an iron (III) chloride (FeCl3) coagulant.

View Article and Find Full Text PDF