2 results match your criteria: "Luzhou Medicine College[Affiliation]"

The role of Nrf2 in oxidative stress-induced endothelial injuries.

J Endocrinol

June 2015

Key Laboratory of Transplant Engineering and ImmunologyMinistry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No.1, Keyuan Road 4th, Wuhou District, Chengdu, Sichuan Province 610041, People's Republic of ChinaDepartment of Human AnatomySchool of Basic Medical Sciences, Luzhou Medicine College, Luzhou, People's Republic of China

Endothelial dysfunction is an important risk factor for cardiovascular disease, and it represents the initial step in the pathogenesis of atherosclerosis. Failure to protect against oxidative stress-induced cellular damage accounts for endothelial dysfunction in the majority of pathophysiological conditions. Numerous antioxidant pathways are involved in cellular redox homeostasis, among which the nuclear factor-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)-antioxidant response element (ARE) signaling pathway is perhaps the most prominent.

View Article and Find Full Text PDF

Jiaweisinisan facilitates neurogenesis in the hippocampus after stress damage.

Neural Regen Res

April 2013

Department of Basic Theory of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510060, Guangdong Province, China.

The traditional Chinese medicine Jiaweisinisan has antidepressant effects, and can inhibit hypothalamus-pituitary-adrenal gland axis hyperactivity in stress-induced depression. In this study, rat hippocampal neural precursor cells were cultured in serum-free medium in vitro and a stress damage model was established with 120 μM corticosterone. Cells were treated with 10% (v/v) Jiaweisinisan drug-containing serum and the corticosterone antagonist RU38486.

View Article and Find Full Text PDF