11 results match your criteria: "Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province)[Affiliation]"

Background: Recently, osteoblast pyroptosis has been proposed as a potential pathogenic mechanism underlying osteoporosis, although this remains to be confirmed. Luteolin (Lut), a flavonoid phytochemical, plays a critical role in the anti-osteoporosis effects of many traditional Chinese medicine prescriptions. However, its protective impact on osteoblasts in postmenopausal osteoporosis (PMOP) has not been elucidated.

View Article and Find Full Text PDF

Our previous studies have confirmed that resveratrol (RSV) can prevent the development of osteoarthritis through a variety of mechanisms, such as apoptosis inhibition, autophagy induction and SIRT 1 activation. However, the pharmaceutical application of RSV is mainly limited by its low bioavailability. Here, we designed and synthesized RSV-loaded poly (D, l-lactide-coglycolide acid) (PLGA)-nanoparticles (NPs).

View Article and Find Full Text PDF

Background: This study aimed to explore the effect of a nanomaterial-based miR-320a inhibitor sustained release system in trauma-induced osteonecrosis of the femoral head (TIONFH).

Methods: The miR-320a inhibitor-loaded polyethylene glycol (PEG)- Poly(lactic-co-glycolic acid) (PLGA)- Poly-L-lysine (PLL) nanoparticles were constructed using the double emulsion method. The TIONFH rabbit model was established to observe the effects of miR-320a inhibitor nanoparticles in vivo.

View Article and Find Full Text PDF

Human bone marrow mesenchymal stem cells (hBMMSCs) are a promising cell source for bone engineering owing to their high potential to differentiate into osteoblasts. The objective of the present study is to assess microRNA-126 (miR-126) and examine its effects on the osteogenic differentiation of hBMMSCs. In this study, we investigate the role of miR-126 in the progression of osteogenic differentiation (OD) as well as the apoptosis and inflammation of hBMMSCs during OD induction.

View Article and Find Full Text PDF

A large number of studies in recent years indicate that osteocytes are the orchestrators of bone remodeling by regulating both osteoblast and osteoclast activities. Oxidative stress-induced osteocyte apoptosis plays critical roles in the pathological processes of postmenopausal osteoporosis. Resveratrol is a natural polyphenolic compound that ameliorates postmenopausal osteoporosis.

View Article and Find Full Text PDF

Objective: Femoral neck fracture (FNF) is a common clinical trauma with high mortality and disability rates. Furthermore, its incidence increases exponentially with increasing age. Existing classifications have some disadvantages.

View Article and Find Full Text PDF

Objective: A number of miRNAs and their targets were dragged in the differentiation of bone marrow mesenchymal stem cells (BMSCs). We aimed to elaborate the underlying molecular mechanisms of miRNA-320a in the osteoblast and adipocyte differentiation.

Methods: Trauma-induced osteonecrosis of the femoral head (TIONFH) and normal control samples (n = 10 for each group) were collected, followed by miRNA chip analysis to identify the differentially expressed miRNAs.

View Article and Find Full Text PDF

Our study showed that Signal transducer and activator of transcription (STAT)1 and STAT3 phosphorylation was firstly upregulated in the early stage of osteogenic differentiation (OD), and quickly eliminated in hours. Following with phosphorylation of STAT1/3, its downstream feedback regulator Suppressor of cytokine signaling 1 (SOCS1) protein also underwent a quick elevation. Further activation and deactivation of STAT1/3, by administrated with Colivelin and Nifuroxazide in Bone mesenchymal stem cells (BMSCs), increased and decreased SOCS1 expression, inhibited and promoted OD of BMSCs, respectively, as evidenced by Alizarin staining, alkaline phosphatase (ALP) activity, and determination of Run-related transcription factor 2 (RUNX2), Osteocalcin (OCN), ALP, and Bone sialoprotein (BSP).

View Article and Find Full Text PDF

Fracture healing is a complex event with the involvement of many cell systems, cytokines, as well as mRNAs. Herein, we report the interactions among long noncoding RNA X-inactive specific transcript (XIST)/microRNA-135 (miR-135)/cAMP response element-binding protein 1 (CREB1) axis during fracture healing. We observed increased expression of XIST in patients with long-term unhealed fracture by microarray analysis.

View Article and Find Full Text PDF

Trauma-induced osteonecrosis of the femoral head (TIONFH) is characterized by femoral head collapse accompanied by degenerative changes of the hip. We previously reported that miR-93-5p expression is abnormally high in patients with TIONFH, but the role of miR-93-5p in the TIONFH process remains unclear. Herein, we investigated the role of miR-93-5p in TIONFH in a rabbit model.

View Article and Find Full Text PDF

We aimed to identify specific circular RNAs (circRNAs) involved in bone repair of trauma-induced osteonecrosis of femoral head (TIONFH) and to explore the potential mechanism. CircRNA sequencing on the blood sample collected from patients with and without TIONFH was performed to select cirRNAs that were significantly differentially expressed, followed by qRT-PCR confirmation. Furthermore, the functions of one selected circRNA and the potential mechanisms in bone repair of TIONFH were validated based on the bone marrow mesenchymal stem cells (BMSCs) and osteoclast-like cells (OLCs) through CCK-8, flow cytometry, transwell assay, luciferase reporter assay, and western blot.

View Article and Find Full Text PDF