13 results match your criteria: "Ludwik Hirszfeld Institute of Immunology Experimental Therapy[Affiliation]"

Antitumoral melatonin-loaded nanostructured lipid carriers.

Nanomedicine (Lond)

October 2024

Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain.

Cancer constitutes the second leading cause of death worldwide, with conventional therapies limited by significant side effects. Melatonin (MEL), a natural compound with antitumoral properties, suffers from instability and low solubility. To overcome these issues, MEL was encapsulated into nanostructured lipid carriers (MEL-NLC) containing rosehip oil to enhance stability and boost its antitumoral activity.

View Article and Find Full Text PDF

Multiple sclerosis (MS) causes long-lasting, multifocal damage to the central nervous system. The complex background of MS is associated with autoimmune inflammation and neurodegeneration processes, and is potentially affected by many contributing factors, including altered composition and function of the gut microbiota. In this review, current experimental and clinical evidence is presented for the characteristics of gut dysbiosis found in MS, as well as for its relevant links with the course of the disease and the dysregulated immune response and metabolic pathways involved in MS pathology.

View Article and Find Full Text PDF

Background: The disturbed metabolism of ceramide (Cer) is supposed to evoke the autoimmune response, contributing to MS pathology.

Objectives: To determine levels of anti-Cer immunoglobulins G (IgGs) in the CSF and serum of subjects with various phenotypes of MS, and to investigate relationships between levels of anti-Cer antibodies and MS-related variables.

Methods: IgGs isolated from serum and the CSF of 68 MS patients and appropriate controls were examined for their reactivity to Cer subspecies.

View Article and Find Full Text PDF

Sphingolipids (SLs) play a significant role in the nervous system, as major components of the myelin sheath, contributors to lipid raft formation that organize intracellular processes, as well as active mediators of transport, signaling and the survival of neurons and glial cells. Alterations in SL metabolism and content are observed in the course of central nervous system diseases, including multiple sclerosis (MS). In this review, we summarize the current evidence from studies on SLs (particularly gangliosides), which may shed new light upon processes underlying the MS background.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a central nervous system disease with complex pathogenesis, including two main processes: immune-mediated inflammatory demyelination and progressive degeneration with axonal loss. Despite recent progress in our understanding and management of MS, availability of sensitive and specific biomarkers for these both processes, as well as neuroprotective therapeutic options targeted at progressive phase of disease, are still being sought. Given their abundance in the myelin sheath, lipids are believed to play a central role in underlying immunopathogenesis in MS and seem to be a promising subject of investigation in this field.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is classified as being an autoimmune response in the genetically susceptible individual to a persistent but unidentified antigen(s). Both the adaptive and the innate immune systems are likely to contribute significantly to MS pathogenesis.

View Article and Find Full Text PDF

Phages and immunomodulation.

Future Microbiol

August 2017

Department of Clinical Immunology, Transplantation Institute, The Medical University of Warsaw, Warsaw, Poland.

In the past years, the microbiome and its role in the pathophysiology of diseases have gained great interest. The progress of our knowledge in this field opens completely novel prospects for treating disorders, including those which are most challenging to medicine today. Of special interest are studies on the interactions of the microbiome with the immune system.

View Article and Find Full Text PDF

Activated microglia release pro-inflammatory factors and calpain into the extracellular milieu, damaging surrounding neurons. However, mechanistic links to progressive neurodegeneration in disease such as multiple sclerosis (MS) remain obscure. We hypothesize that persistent damaged/dying neurons may also release cytotoxic factors and calpain into the media, which then activate microglia again.

View Article and Find Full Text PDF

Immunogenic lipids may play key roles in host defenses against infection and in generating autoimmune inflammation and organ-specific damage. In multiple sclerosis (MS) there are unequivocal autoimmune features and vulnerability to aggravation or induction by microbial or viral infection. We have found glycolipid-driven anergy of circulating lymphocytes in MS indicating that this immune response is affected in MS and the robust effects of iNKT activation with potent cellular and cytokine activities emphasizes its potential importance.

View Article and Find Full Text PDF

Myelin recovery in multiple sclerosis: the challenge of remyelination.

Brain Sci

August 2013

Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Regents University, 1120 15th Street, Augusta, GA 30912-2620, USA.

Multiple sclerosis (MS) is the most common demyelinating and an autoimmune disease of the central nervous system characterized by immune-mediated myelin and axonal damage, and chronic axonal loss attributable to the absence of myelin sheaths. T cell subsets (Th1, Th2, Th17, CD8+, NKT, CD4+CD25+ T regulatory cells) and B cells are involved in this disorder, thus new MS therapies seek damage prevention by resetting multiple components of the immune system. The currently approved therapies are immunoregulatory and reduce the number and rate of lesion formation but are only partially effective.

View Article and Find Full Text PDF

Phage therapy (PT) is a unique method of treatment of bacterial infections using bacteriophages (phages)-viruses that specifically kill bacteria, including their antibiotic-resistant strains. Over the last decade a marked increase in interest in the therapeutic use of phages has been observed, which has resulted from a substantial rise in the prevalence of antibiotic resistance of bacteria, coupled with an inadequate number of new antibiotics. The first, and so far the only, center of PT in the European Union is the Phage Therapy Unit (PTU) established at the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland in 2005.

View Article and Find Full Text PDF

Dendritic cells (DCs) are believed to be the most potent antigen-presenting cells able to link the innate and adaptive immune systems. Many studies have focused on different immunotherapeutic approaches to applying DCs as tools to improve anticancer therapy. Although a number of investigations suggesting the benefit of DC-based vaccination during anticancer therapy have been reported, the general knowledge regarding the ultimate methods of DC-vaccine preparation is still unsatisfactory.

View Article and Find Full Text PDF

It is well documented that serum IgG from rheumatoid arthritis (RA) patients exhibits decreased galactosylation of its conservative N-glycans (Asn-297) in CH2 domains of the heavy chains; it has been shown that this agalactosylation is proportional to disease severity. In the present investigation we analyzed galactosylation of IgG derived from the patients using a modified ELISA-plate test, biosensor BIAcore and total sugar analysis (GC-MS). For ELISA and BIAcore the binding of IgG preparations, purified from the patients' sera, to two lectins: Ricinus communis (RCA-I) and Griffonia simplicifolia (GSL-II) was applied.

View Article and Find Full Text PDF