2 results match your criteria: "Lomonosov Moscow State University Physics Department[Affiliation]"

Article Synopsis
  • A theoretical framework is proposed to understand how ultrafast population transfer and magnetization reversal in superconducting meta-atoms occur when exposed to short magnetic field pulses.
  • A method using stimulated Raman Λ-type transitions is suggested to enable rapid quantum operations on the picosecond timeframe.
  • An experimental setup for implementing this ultrafast control within a circuit-on-chip is also introduced.
View Article and Find Full Text PDF

We present our approach for a consistent, fully quantum mechanical description of the magnetization reversal process in natural and artificial atomic systems by means of short magnetic pulses. In terms of the simplest model of a two-level system with a magnetic moment, we analyze the possibility of a fast magnetization reversal on the picosecond timescale induced by oscillating or short unipolar magnetic pulses. We demonstrate the possibility of selective magnetization reversal of a superconducting flux qubit using a single flux quantum-based pulse and suggest a promising, rapid Λ-scheme for resonant implementation of this process.

View Article and Find Full Text PDF