6 results match your criteria: "Liuzhou Peoples Hospital[Affiliation]"

Background: Numerous studies have reported a high incidence and risk of severe illness due to coronavirus disease 2019 (COVID-19) in patients with type 2 diabetes (T2DM). COVID-19 patients may experience elevated or decreased blood sugar levels and may even develop diabetes. However, the molecular mechanisms linking these two diseases remain unclear.

View Article and Find Full Text PDF

Background: It has been reported that diabetes and hypertension increase the adverse outcomes of coronavirus disease 2019 (COVID-19). Aside from the inherent factors of diabetes and hypertension, it remains unclear whether antidiabetic or antihypertensive medications contribute to the increased adverse outcomes of COVID-19. The effect of commonly used antidiabetic and antihypertensive medications on COVID-19 outcomes has been inconsistently concluded in existing observational studies.

View Article and Find Full Text PDF

Background: Regarding the impact of metformin on COVID-19, there are currently varying opinions from multiple studies. Growth differentiation factor 15 (GDF-15) is a biomarker of metformin use and dosage, and we used two-sample Mendelian randomization (MR) to assess the causal effect of GDF-15 (metformin) on COVID-19 susceptibility, hospitalization, and severe COVID-19, thereby guiding the selection of glucose-lowering agents for diabetic patients during the COVID-19 pandemic.

Methods: Two sets of genetic tools were utilized for MR analysis, derived from publicly available genetic data.

View Article and Find Full Text PDF

Background: Atherosclerosis (AS) is one of the leading causes of the cardio-cerebral vascular incident. The constantly emerging evidence indicates a close association between nonalcoholic fatty liver disease (NAFLD) and AS. However, the exact molecular mechanisms underlying the correlation between these two diseases remain unclear.

View Article and Find Full Text PDF

Zinc finger protein 521 (Zfp521) is involved in a number of cellular processes in a variety of cells and tissues. In the present study, the effects of Zfp521 on osteogenic differentiation of rat mesenchymal stem cells (MSCs) were investigated. The results showed that, in rat MSCs, knocking down cellular Zfp521 by short hairpin RNA (shRNA) decreases cell proliferation while promoting ALP activity, calcium accumulation, and the expression of mRNA that encodes bone sialoprotein (BSP), osteocalcin (OCN) and Runx2.

View Article and Find Full Text PDF